无线城域网中云服务器布局问题的三目标模型

IF 3.8 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Bahareh Bahrami , Mohammad Reza Khayyambashi
{"title":"无线城域网中云服务器布局问题的三目标模型","authors":"Bahareh Bahrami ,&nbsp;Mohammad Reza Khayyambashi","doi":"10.1016/j.suscom.2025.101124","DOIUrl":null,"url":null,"abstract":"<div><div>To reduce latency and save energy, cloudlet computing enables tasks to be offloaded from user equipment to Cloudlet Servers (CSs). Determining the optimal number of CSs and the appropriate locations for their placement are two major challenges in building an efficient computing platform. Placing a CS at the closest location to the user can improve the QoS. Additionally, providing additional CSs to cover each user ensures that the user's needs are met even if the designated server is unable to provide services. However, to minimize energy consumption and costs, service providers tend to use a minimum number of CSs. Since the coverage zones of different CSs may overlap, fewer additional servers need to be deployed in such areas. This paper examines the problem of CS placement in a Wireless Metropolitan Area Network (WMAN) and introduces a three-objective model that aims to optimize transmission distance, coverage with overlap control, and energy consumption. To obtain an appropriate Pareto front, the performance of the NSGA-II, binary MOPSO, and binary MOGWO algorithms is examined through four different scenarios under the Shanghai Telecom dataset. Comparing the results of the Hyper-Volume (HV) indicator reveals that the NSGA-II algorithm has higher values in all studied scenarios. A higher HV value means that the solution set is closer to an optimal Pareto set. In the best and worst case, the HV values for the NSGA-II were equal to 0.2275 and 0.1883, respectively.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"46 ","pages":"Article 101124"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A tri-objective model for cloudlet server placement problem in wireless metropolitan area networks\",\"authors\":\"Bahareh Bahrami ,&nbsp;Mohammad Reza Khayyambashi\",\"doi\":\"10.1016/j.suscom.2025.101124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To reduce latency and save energy, cloudlet computing enables tasks to be offloaded from user equipment to Cloudlet Servers (CSs). Determining the optimal number of CSs and the appropriate locations for their placement are two major challenges in building an efficient computing platform. Placing a CS at the closest location to the user can improve the QoS. Additionally, providing additional CSs to cover each user ensures that the user's needs are met even if the designated server is unable to provide services. However, to minimize energy consumption and costs, service providers tend to use a minimum number of CSs. Since the coverage zones of different CSs may overlap, fewer additional servers need to be deployed in such areas. This paper examines the problem of CS placement in a Wireless Metropolitan Area Network (WMAN) and introduces a three-objective model that aims to optimize transmission distance, coverage with overlap control, and energy consumption. To obtain an appropriate Pareto front, the performance of the NSGA-II, binary MOPSO, and binary MOGWO algorithms is examined through four different scenarios under the Shanghai Telecom dataset. Comparing the results of the Hyper-Volume (HV) indicator reveals that the NSGA-II algorithm has higher values in all studied scenarios. A higher HV value means that the solution set is closer to an optimal Pareto set. In the best and worst case, the HV values for the NSGA-II were equal to 0.2275 and 0.1883, respectively.</div></div>\",\"PeriodicalId\":48686,\"journal\":{\"name\":\"Sustainable Computing-Informatics & Systems\",\"volume\":\"46 \",\"pages\":\"Article 101124\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Computing-Informatics & Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210537925000447\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925000447","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

为了减少延迟和节能,cloudlet计算可以将任务从用户设备上卸载到云服务器(cloudlet Servers)上。在构建高效的计算平台时,确定CSs的最佳数量和适当的放置位置是两个主要挑战。将CS放置在离用户最近的位置可以提高QoS。此外,提供额外的CSs以覆盖每个用户,确保即使指定的服务器无法提供服务,也能满足用户的需求。然而,为了最大限度地降低能耗和成本,服务提供商倾向于使用最少数量的云存储系统。由于不同云存储系统的覆盖区域可能重叠,因此需要在这些区域部署的额外服务器较少。本文研究了无线城域网(WMAN)中的CS放置问题,并介绍了一个三目标模型,旨在优化传输距离,覆盖重叠控制和能耗。为了获得合适的Pareto front,在上海电信数据集的四种不同场景下,研究了NSGA-II、二进制MOPSO和二进制MOGWO算法的性能。对比Hyper-Volume (HV)指标的结果发现,NSGA-II算法在所有研究场景中都具有更高的值。较高的HV值意味着解集更接近最优帕累托集。在最佳和最差情况下,NSGA-II的HV值分别为0.2275和0.1883。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A tri-objective model for cloudlet server placement problem in wireless metropolitan area networks
To reduce latency and save energy, cloudlet computing enables tasks to be offloaded from user equipment to Cloudlet Servers (CSs). Determining the optimal number of CSs and the appropriate locations for their placement are two major challenges in building an efficient computing platform. Placing a CS at the closest location to the user can improve the QoS. Additionally, providing additional CSs to cover each user ensures that the user's needs are met even if the designated server is unable to provide services. However, to minimize energy consumption and costs, service providers tend to use a minimum number of CSs. Since the coverage zones of different CSs may overlap, fewer additional servers need to be deployed in such areas. This paper examines the problem of CS placement in a Wireless Metropolitan Area Network (WMAN) and introduces a three-objective model that aims to optimize transmission distance, coverage with overlap control, and energy consumption. To obtain an appropriate Pareto front, the performance of the NSGA-II, binary MOPSO, and binary MOGWO algorithms is examined through four different scenarios under the Shanghai Telecom dataset. Comparing the results of the Hyper-Volume (HV) indicator reveals that the NSGA-II algorithm has higher values in all studied scenarios. A higher HV value means that the solution set is closer to an optimal Pareto set. In the best and worst case, the HV values for the NSGA-II were equal to 0.2275 and 0.1883, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Computing-Informatics & Systems
Sustainable Computing-Informatics & Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTUREC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
10.70
自引率
4.40%
发文量
142
期刊介绍: Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信