{"title":"基于离子液体掺杂壳聚糖的新型质子交换膜","authors":"Naima Naffati , Fátima C. Teixeira , António P.S. Teixeira , C.M. Rangel","doi":"10.1016/j.ssi.2025.116852","DOIUrl":null,"url":null,"abstract":"<div><div>The development of new proton exchange membranes (PEM) for electrochemical devices have attracted researcher's attention in the pursuit for more sustainable and cost-effective technologies for clean energy production and conversion. In this work, new doped chitosan (CS) membranes were prepared by the casting method. Chitosan is an abundant, biodegradable and non-toxic material, and as a membrane, a sustainable and cheaper alternative to those perfluorinated and commonly used, such as Nafion. Three different ionic liquids were employed as dopants, ([EMIM][OTf], [EMIM][FSI] and [MIMH][HSO<sub>4</sub>]), in various concentrations and up to 50 wt% load. The new membranes were characterized by ATR-FTIR, thermogravimetry, using TGA and DSC techniques to assess their thermal properties, and by SEM, to analyse their surface morphology. Proton conduction properties of the new membranes were assessed by Electrochemical Impedance Spectroscopy (EIS). The new doped membranes showed an increase in the proton conduction compared with pristine chitosan membranes. The incorporation of ionic liquids into chitosan membranes improved their proton conductivity and thermal properties, with [EMIM][OTf] and [MIMH][HSO<sub>4</sub>] showing the most promising results. A 2-fold increment in the proton conduction was generally observed with the increase of the temperature from 30 to 60 °C. The best proton conductivity was found at 60 °C for the membrane doped with [EMIM][OTf], with a value of 47 mS.cm<sup>−1</sup>.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"424 ","pages":"Article 116852"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New proton exchange membranes based on ionic liquid doped chitosan\",\"authors\":\"Naima Naffati , Fátima C. Teixeira , António P.S. Teixeira , C.M. Rangel\",\"doi\":\"10.1016/j.ssi.2025.116852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of new proton exchange membranes (PEM) for electrochemical devices have attracted researcher's attention in the pursuit for more sustainable and cost-effective technologies for clean energy production and conversion. In this work, new doped chitosan (CS) membranes were prepared by the casting method. Chitosan is an abundant, biodegradable and non-toxic material, and as a membrane, a sustainable and cheaper alternative to those perfluorinated and commonly used, such as Nafion. Three different ionic liquids were employed as dopants, ([EMIM][OTf], [EMIM][FSI] and [MIMH][HSO<sub>4</sub>]), in various concentrations and up to 50 wt% load. The new membranes were characterized by ATR-FTIR, thermogravimetry, using TGA and DSC techniques to assess their thermal properties, and by SEM, to analyse their surface morphology. Proton conduction properties of the new membranes were assessed by Electrochemical Impedance Spectroscopy (EIS). The new doped membranes showed an increase in the proton conduction compared with pristine chitosan membranes. The incorporation of ionic liquids into chitosan membranes improved their proton conductivity and thermal properties, with [EMIM][OTf] and [MIMH][HSO<sub>4</sub>] showing the most promising results. A 2-fold increment in the proton conduction was generally observed with the increase of the temperature from 30 to 60 °C. The best proton conductivity was found at 60 °C for the membrane doped with [EMIM][OTf], with a value of 47 mS.cm<sup>−1</sup>.</div></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"424 \",\"pages\":\"Article 116852\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273825000712\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000712","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
New proton exchange membranes based on ionic liquid doped chitosan
The development of new proton exchange membranes (PEM) for electrochemical devices have attracted researcher's attention in the pursuit for more sustainable and cost-effective technologies for clean energy production and conversion. In this work, new doped chitosan (CS) membranes were prepared by the casting method. Chitosan is an abundant, biodegradable and non-toxic material, and as a membrane, a sustainable and cheaper alternative to those perfluorinated and commonly used, such as Nafion. Three different ionic liquids were employed as dopants, ([EMIM][OTf], [EMIM][FSI] and [MIMH][HSO4]), in various concentrations and up to 50 wt% load. The new membranes were characterized by ATR-FTIR, thermogravimetry, using TGA and DSC techniques to assess their thermal properties, and by SEM, to analyse their surface morphology. Proton conduction properties of the new membranes were assessed by Electrochemical Impedance Spectroscopy (EIS). The new doped membranes showed an increase in the proton conduction compared with pristine chitosan membranes. The incorporation of ionic liquids into chitosan membranes improved their proton conductivity and thermal properties, with [EMIM][OTf] and [MIMH][HSO4] showing the most promising results. A 2-fold increment in the proton conduction was generally observed with the increase of the temperature from 30 to 60 °C. The best proton conductivity was found at 60 °C for the membrane doped with [EMIM][OTf], with a value of 47 mS.cm−1.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.