基于机器学习电位模拟的纳米团簇形成的原子细节

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Vikas Tiwari,  and , Tarak Karmakar*, 
{"title":"基于机器学习电位模拟的纳米团簇形成的原子细节","authors":"Vikas Tiwari,&nbsp; and ,&nbsp;Tarak Karmakar*,&nbsp;","doi":"10.1021/acs.nanolett.5c0134010.1021/acs.nanolett.5c01340","DOIUrl":null,"url":null,"abstract":"<p >Understanding the mechanism for the formation of metal nanoclusters is an open challenge in nanoscience. Computational modeling can provide molecular details of nanocluster formation that are otherwise inaccessible. However, simulating nanocluster nucleation in solution presents significant challenges, including inaccurate energy predictions and limitations on the system size and time scale. This work addresses these challenges by combining deep neural networks (DNNs) with well-tempered metadynamics (WT-MetaD) to model the nucleation of a prototypical nanocluster, Ag<sub>6</sub>(SCNH<sub>2</sub>)<sub>6</sub> in methanol. A neural-network-potential-based unbiased molecular dynamics simulation captured the cluster’s dynamic behavior, while WT-MetaD simulations revealed an almost barrierless transition from dispersed precursors to a nucleated state. The method’s robustness was further demonstrated by scaling up to 30 randomly distributed precursors, which resulted in spontaneous nucleation. This study presents the first successful DNN model of nanocluster formation in solution with density-functional-theory-level accuracy, paving the way for advancements in the field.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 14","pages":"5940–5946 5940–5946"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomistic Details of Nanocluster Formation from Machine-Learned-Potential-Based Simulations\",\"authors\":\"Vikas Tiwari,&nbsp; and ,&nbsp;Tarak Karmakar*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c0134010.1021/acs.nanolett.5c01340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Understanding the mechanism for the formation of metal nanoclusters is an open challenge in nanoscience. Computational modeling can provide molecular details of nanocluster formation that are otherwise inaccessible. However, simulating nanocluster nucleation in solution presents significant challenges, including inaccurate energy predictions and limitations on the system size and time scale. This work addresses these challenges by combining deep neural networks (DNNs) with well-tempered metadynamics (WT-MetaD) to model the nucleation of a prototypical nanocluster, Ag<sub>6</sub>(SCNH<sub>2</sub>)<sub>6</sub> in methanol. A neural-network-potential-based unbiased molecular dynamics simulation captured the cluster’s dynamic behavior, while WT-MetaD simulations revealed an almost barrierless transition from dispersed precursors to a nucleated state. The method’s robustness was further demonstrated by scaling up to 30 randomly distributed precursors, which resulted in spontaneous nucleation. This study presents the first successful DNN model of nanocluster formation in solution with density-functional-theory-level accuracy, paving the way for advancements in the field.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 14\",\"pages\":\"5940–5946 5940–5946\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01340\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01340","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解金属纳米团簇形成的机制是纳米科学的一个开放挑战。计算模型可以提供以其他方式无法获得的纳米团簇形成的分子细节。然而,在溶液中模拟纳米团簇成核存在着巨大的挑战,包括不准确的能量预测以及系统大小和时间尺度的限制。这项工作通过将深度神经网络(dnn)与良好调节的元动力学(WT-MetaD)相结合来模拟原型纳米团簇Ag6(SCNH2)6在甲醇中的成核,从而解决了这些挑战。基于神经网络电位的无偏分子动力学模拟捕获了簇的动态行为,而WT-MetaD模拟揭示了从分散前体到成核状态的几乎无障碍的转变。该方法的鲁棒性进一步证明了扩大到30个随机分布的前体,导致自发成核。本研究提出了溶液中纳米团簇形成的第一个成功的深度神经网络模型,具有密度泛函理论级的精度,为该领域的发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Atomistic Details of Nanocluster Formation from Machine-Learned-Potential-Based Simulations

Atomistic Details of Nanocluster Formation from Machine-Learned-Potential-Based Simulations

Understanding the mechanism for the formation of metal nanoclusters is an open challenge in nanoscience. Computational modeling can provide molecular details of nanocluster formation that are otherwise inaccessible. However, simulating nanocluster nucleation in solution presents significant challenges, including inaccurate energy predictions and limitations on the system size and time scale. This work addresses these challenges by combining deep neural networks (DNNs) with well-tempered metadynamics (WT-MetaD) to model the nucleation of a prototypical nanocluster, Ag6(SCNH2)6 in methanol. A neural-network-potential-based unbiased molecular dynamics simulation captured the cluster’s dynamic behavior, while WT-MetaD simulations revealed an almost barrierless transition from dispersed precursors to a nucleated state. The method’s robustness was further demonstrated by scaling up to 30 randomly distributed precursors, which resulted in spontaneous nucleation. This study presents the first successful DNN model of nanocluster formation in solution with density-functional-theory-level accuracy, paving the way for advancements in the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信