原生氧化WOx界面层改善高性能p型WSe2晶体管的迟滞

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hao-Yu Lan, Yuanqiu Tan, Shao-Heng Yang, Xiangkai Liu, Zhongxia Shang, Joerg Appenzeller and Zhihong Chen*, 
{"title":"原生氧化WOx界面层改善高性能p型WSe2晶体管的迟滞","authors":"Hao-Yu Lan,&nbsp;Yuanqiu Tan,&nbsp;Shao-Heng Yang,&nbsp;Xiangkai Liu,&nbsp;Zhongxia Shang,&nbsp;Joerg Appenzeller and Zhihong Chen*,&nbsp;","doi":"10.1021/acs.nanolett.4c0606010.1021/acs.nanolett.4c06060","DOIUrl":null,"url":null,"abstract":"<p >Atomically thin two-dimensional (2D) semiconductors like transition metal dichalcogenides (TMDs) show great promise as new channel materials for next-generation electronic devices. However, their practical implementation is hampered by the lack of suitable gate dielectrics and interfaces that minimize interface and oxide traps. Here, we introduce a novel strategy to improve the dielectric interface of tungsten diselenide (WSe<sub>2</sub>) p-type field-effect transistors (p-FETs) by integrating a native oxide, tungsten oxide (WO<sub><i>x</i></sub>), as an interlayer into a high-κ hafnium dioxide (HfO<sub>2</sub>) back gate stack. The WO<sub><i>x</i></sub> interlayer serves as both a doping layer to adjust the threshold voltage (<i>V</i><sub>TH</sub>) and an interfacial layer to improve the WSe<sub>2</sub>–HfO<sub>2</sub> interface. The subthreshold swing (SS) in long-channel p-FETs with this gate stack can achieve a near-ideal value (∼68 mV/dec), and hysteresis improves significantly within a 6 V gate sweep range. This work establishes a pathway for high-κ dielectric integration in high-performance 2D electronics.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 14","pages":"5616–5623 5616–5623"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Hysteresis of High-Performance p-Type WSe2 Transistors with Native Oxide WOx Interfacial Layer\",\"authors\":\"Hao-Yu Lan,&nbsp;Yuanqiu Tan,&nbsp;Shao-Heng Yang,&nbsp;Xiangkai Liu,&nbsp;Zhongxia Shang,&nbsp;Joerg Appenzeller and Zhihong Chen*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c0606010.1021/acs.nanolett.4c06060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Atomically thin two-dimensional (2D) semiconductors like transition metal dichalcogenides (TMDs) show great promise as new channel materials for next-generation electronic devices. However, their practical implementation is hampered by the lack of suitable gate dielectrics and interfaces that minimize interface and oxide traps. Here, we introduce a novel strategy to improve the dielectric interface of tungsten diselenide (WSe<sub>2</sub>) p-type field-effect transistors (p-FETs) by integrating a native oxide, tungsten oxide (WO<sub><i>x</i></sub>), as an interlayer into a high-κ hafnium dioxide (HfO<sub>2</sub>) back gate stack. The WO<sub><i>x</i></sub> interlayer serves as both a doping layer to adjust the threshold voltage (<i>V</i><sub>TH</sub>) and an interfacial layer to improve the WSe<sub>2</sub>–HfO<sub>2</sub> interface. The subthreshold swing (SS) in long-channel p-FETs with this gate stack can achieve a near-ideal value (∼68 mV/dec), and hysteresis improves significantly within a 6 V gate sweep range. This work establishes a pathway for high-κ dielectric integration in high-performance 2D electronics.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 14\",\"pages\":\"5616–5623 5616–5623\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c06060\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c06060","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

原子薄的二维(2D)半导体,如过渡金属二硫族化合物(TMDs),作为下一代电子器件的新通道材料显示出巨大的前景。然而,由于缺乏合适的栅极电介质和接口,使界面和氧化物陷阱最小化,它们的实际实施受到阻碍。在这里,我们提出了一种新的策略,通过将天然氧化物氧化钨(WOx)作为中间层集成到高κ二氧化铪(HfO2)后门堆栈中来改善二硒化钨(WSe2) p型场效应晶体管(p- fet)的介电界面。WOx夹层既可以作为掺杂层调节阈值电压(VTH),又可以作为界面层改善WSe2-HfO2界面。采用这种栅极堆叠的长通道p- fet的亚阈值摆幅(SS)可以达到接近理想的值(~ 68 mV/dec),并且在6 V栅极扫描范围内,磁滞显著改善。这项工作建立了高性能二维电子器件中高κ介电集成的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improved Hysteresis of High-Performance p-Type WSe2 Transistors with Native Oxide WOx Interfacial Layer

Improved Hysteresis of High-Performance p-Type WSe2 Transistors with Native Oxide WOx Interfacial Layer

Atomically thin two-dimensional (2D) semiconductors like transition metal dichalcogenides (TMDs) show great promise as new channel materials for next-generation electronic devices. However, their practical implementation is hampered by the lack of suitable gate dielectrics and interfaces that minimize interface and oxide traps. Here, we introduce a novel strategy to improve the dielectric interface of tungsten diselenide (WSe2) p-type field-effect transistors (p-FETs) by integrating a native oxide, tungsten oxide (WOx), as an interlayer into a high-κ hafnium dioxide (HfO2) back gate stack. The WOx interlayer serves as both a doping layer to adjust the threshold voltage (VTH) and an interfacial layer to improve the WSe2–HfO2 interface. The subthreshold swing (SS) in long-channel p-FETs with this gate stack can achieve a near-ideal value (∼68 mV/dec), and hysteresis improves significantly within a 6 V gate sweep range. This work establishes a pathway for high-κ dielectric integration in high-performance 2D electronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信