{"title":"热稳定的纤维素基摩擦电纳米发电机,通过深阱和多重非共价相互作用实现超高电荷密度","authors":"Feijie Wang, Yueming Hu, Chao Jia, Suyang Wang, Hao Wang, Yichi Liu, Shiqiang Ouyang, Shenzhuo Zhang, Shufeng Ma, Zhen Wu and Liqiang Wang*, ","doi":"10.1021/acs.nanolett.4c0564310.1021/acs.nanolett.4c05643","DOIUrl":null,"url":null,"abstract":"<p >Stable high-output for triboelectric nanogenerators (TENGs) in extreme environments is challenged by high charge dissipation rates and friction layer degradation at high temperatures. This study introduces a triboelectric material design that ensures stable high-output at high temperatures through a synergistic approach of multilayer noncovalent bonding and increased surface deep trap density. By grafting sulfonic acid groups onto cellulose and incorporating self-assembled molecules with large energy gaps, we significantly enhance the dielectric’s charge storage capacity and reduce charge dissipation by 82%. The modified cellulose exhibits a notable increase in deep trap density and improved mechanical properties through enhanced high-enthalpy states from noncovalent interactions. As a result, TENGs achieve an ultrahigh surface charge density of 152 μC/m<sup>2</sup> at 250 °C. This strategy presents a simple method for constructing TENGs with stabilized electrical output in high-temperature settings, facilitating their use as self-powered sensors in extreme conditions.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 14","pages":"5582–5590 5582–5590"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermally Stable Cellulose-Based Triboelectric Nanogenerators with Ultrahigh Charge Density Enabled by Deep Traps and Multiple Noncovalent Interactions\",\"authors\":\"Feijie Wang, Yueming Hu, Chao Jia, Suyang Wang, Hao Wang, Yichi Liu, Shiqiang Ouyang, Shenzhuo Zhang, Shufeng Ma, Zhen Wu and Liqiang Wang*, \",\"doi\":\"10.1021/acs.nanolett.4c0564310.1021/acs.nanolett.4c05643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Stable high-output for triboelectric nanogenerators (TENGs) in extreme environments is challenged by high charge dissipation rates and friction layer degradation at high temperatures. This study introduces a triboelectric material design that ensures stable high-output at high temperatures through a synergistic approach of multilayer noncovalent bonding and increased surface deep trap density. By grafting sulfonic acid groups onto cellulose and incorporating self-assembled molecules with large energy gaps, we significantly enhance the dielectric’s charge storage capacity and reduce charge dissipation by 82%. The modified cellulose exhibits a notable increase in deep trap density and improved mechanical properties through enhanced high-enthalpy states from noncovalent interactions. As a result, TENGs achieve an ultrahigh surface charge density of 152 μC/m<sup>2</sup> at 250 °C. This strategy presents a simple method for constructing TENGs with stabilized electrical output in high-temperature settings, facilitating their use as self-powered sensors in extreme conditions.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 14\",\"pages\":\"5582–5590 5582–5590\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05643\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05643","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermally Stable Cellulose-Based Triboelectric Nanogenerators with Ultrahigh Charge Density Enabled by Deep Traps and Multiple Noncovalent Interactions
Stable high-output for triboelectric nanogenerators (TENGs) in extreme environments is challenged by high charge dissipation rates and friction layer degradation at high temperatures. This study introduces a triboelectric material design that ensures stable high-output at high temperatures through a synergistic approach of multilayer noncovalent bonding and increased surface deep trap density. By grafting sulfonic acid groups onto cellulose and incorporating self-assembled molecules with large energy gaps, we significantly enhance the dielectric’s charge storage capacity and reduce charge dissipation by 82%. The modified cellulose exhibits a notable increase in deep trap density and improved mechanical properties through enhanced high-enthalpy states from noncovalent interactions. As a result, TENGs achieve an ultrahigh surface charge density of 152 μC/m2 at 250 °C. This strategy presents a simple method for constructing TENGs with stabilized electrical output in high-temperature settings, facilitating their use as self-powered sensors in extreme conditions.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.