TiO2缓冲层的有限电子主导电流变响应

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sai Chen, Nikita M. Kuznetsov, Longtao Hou, Hyoung Jin Choi, Ke Zhang*, Jiupeng Zhao and Yao Li, 
{"title":"TiO2缓冲层的有限电子主导电流变响应","authors":"Sai Chen,&nbsp;Nikita M. Kuznetsov,&nbsp;Longtao Hou,&nbsp;Hyoung Jin Choi,&nbsp;Ke Zhang*,&nbsp;Jiupeng Zhao and Yao Li,&nbsp;","doi":"10.1021/acs.nanolett.4c0561910.1021/acs.nanolett.4c05619","DOIUrl":null,"url":null,"abstract":"<p >We report porous carbon sphere electrorheological (ER) nanoparticles coated with a titanium dioxide layer (HCs@TiO<sub>2</sub>). Utilizing the buffering effect of amorphous TiO<sub>2</sub>, the HCs@TiO<sub>2</sub> ER fluid (ERF) shows a yield stress that exceeds that of previous carbon-based ER nanomaterials. The mechanisms of the high ER response are elucidated through the analysis of the dielectric properties, demonstrating that the amorphous TiO<sub>2</sub> shell not only restricts the electron-dominated motion but also significantly improves the interfacial polarization. Furthermore, the HCs@TiO<sub>2</sub> ERF exhibits superior sedimentation stability and low current density, which is attributed to the formation of a hydrogen bond network. The rheological behavior of HCs@TiO<sub>2</sub> ERF is analyzed using the Bingham and Cho–Choi–Jhon model, where the dynamic yield stress as a function of electric field strength is fitted using a generalized yield stress equation. These analyses indicate that local electrostatic accumulation between the hybrid shells benefits the ER response.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 14","pages":"5591–5598 5591–5598"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limited Electron-Dominated Electrorheological Response with TiO2 Buffer Layer\",\"authors\":\"Sai Chen,&nbsp;Nikita M. Kuznetsov,&nbsp;Longtao Hou,&nbsp;Hyoung Jin Choi,&nbsp;Ke Zhang*,&nbsp;Jiupeng Zhao and Yao Li,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c0561910.1021/acs.nanolett.4c05619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We report porous carbon sphere electrorheological (ER) nanoparticles coated with a titanium dioxide layer (HCs@TiO<sub>2</sub>). Utilizing the buffering effect of amorphous TiO<sub>2</sub>, the HCs@TiO<sub>2</sub> ER fluid (ERF) shows a yield stress that exceeds that of previous carbon-based ER nanomaterials. The mechanisms of the high ER response are elucidated through the analysis of the dielectric properties, demonstrating that the amorphous TiO<sub>2</sub> shell not only restricts the electron-dominated motion but also significantly improves the interfacial polarization. Furthermore, the HCs@TiO<sub>2</sub> ERF exhibits superior sedimentation stability and low current density, which is attributed to the formation of a hydrogen bond network. The rheological behavior of HCs@TiO<sub>2</sub> ERF is analyzed using the Bingham and Cho–Choi–Jhon model, where the dynamic yield stress as a function of electric field strength is fitted using a generalized yield stress equation. These analyses indicate that local electrostatic accumulation between the hybrid shells benefits the ER response.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 14\",\"pages\":\"5591–5598 5591–5598\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05619\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05619","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们报道多孔碳球电流变(ER)纳米颗粒包覆二氧化钛层(HCs@TiO2)。利用无定形TiO2的缓冲作用,HCs@TiO2 ER流体(ERF)的屈服应力超过了以前的碳基ER纳米材料。通过对介电性质的分析,阐明了高ER响应的机制,表明非晶TiO2壳层不仅限制了电子主导运动,而且显著改善了界面极化。此外,HCs@TiO2 ERF表现出优异的沉降稳定性和低电流密度,这归因于氢键网络的形成。采用Bingham和Cho-Choi-Jhon模型分析了HCs@TiO2 ERF的流变行为,其中动态屈服应力作为电场强度的函数采用广义屈服应力方程拟合。这些分析表明,杂化壳间的局部静电积累有利于内能响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Limited Electron-Dominated Electrorheological Response with TiO2 Buffer Layer

Limited Electron-Dominated Electrorheological Response with TiO2 Buffer Layer

We report porous carbon sphere electrorheological (ER) nanoparticles coated with a titanium dioxide layer (HCs@TiO2). Utilizing the buffering effect of amorphous TiO2, the HCs@TiO2 ER fluid (ERF) shows a yield stress that exceeds that of previous carbon-based ER nanomaterials. The mechanisms of the high ER response are elucidated through the analysis of the dielectric properties, demonstrating that the amorphous TiO2 shell not only restricts the electron-dominated motion but also significantly improves the interfacial polarization. Furthermore, the HCs@TiO2 ERF exhibits superior sedimentation stability and low current density, which is attributed to the formation of a hydrogen bond network. The rheological behavior of HCs@TiO2 ERF is analyzed using the Bingham and Cho–Choi–Jhon model, where the dynamic yield stress as a function of electric field strength is fitted using a generalized yield stress equation. These analyses indicate that local electrostatic accumulation between the hybrid shells benefits the ER response.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信