CuO-ZnO-TiO2催化氧化异丙烯制过氧化氢异丙烯的应用、表征及模拟

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Yicheng Zhang, Siyu Wu, Yuetong Ma, Fei Zha, Xiaohua Tang, Yue Chang, Haifeng Tian, Xiaojun Guo
{"title":"CuO-ZnO-TiO2催化氧化异丙烯制过氧化氢异丙烯的应用、表征及模拟","authors":"Yicheng Zhang, Siyu Wu, Yuetong Ma, Fei Zha, Xiaohua Tang, Yue Chang, Haifeng Tian, Xiaojun Guo","doi":"10.1021/acs.iecr.4c04387","DOIUrl":null,"url":null,"abstract":"CuO-ZnO-TiO<sub>2</sub> was prepared by ultrasound-assisted coprecipitation. Its catalytic performance in the liquid-phase oxidation of cumene with oxygen to cumene hydroperoxide (CHP) was studied. Under the reaction conditions of CuO:ZnO:TiO<sub>2</sub> molar ratio of 3:1:1.33, feed ratio (catalyst/cumene) of 7.5 mg/mL, reaction temperature of 85 °C, reaction time of 7 h, and oxygen flow rate of 15 mL/min, the conversion of cumene was 37.2% and the selectivity of CHP was 94.5%. Characterization by XRD, SEM, TEM, EDS, and N<sub>2</sub> adsorption/desorption showed 3CuO-ZnO-TiO<sub>2</sub> was concentrated with a particle size of about 50 nm, specific area of about 110 m<sup>2</sup>/g with a pore volume of 0.0048 cm<sup>3</sup>/g, and high dispersion of active components. XPS and O<sub>2</sub>-TPD characterization indicated that 3CuO-ZnO-TiO<sub>2</sub> contains a large amount of lattice oxygen and reactive oxygen species. DFT simulation indicated ROO· is more easily generated and more likely to bind to the CuO-ZnO surface to facilitate oxidation of cumene to cumene peroxides.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"16 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application, Characterization, and Simulation of CuO-ZnO-TiO2 for Catalytic Oxidation of Cumene to Cumene Hydroperoxide\",\"authors\":\"Yicheng Zhang, Siyu Wu, Yuetong Ma, Fei Zha, Xiaohua Tang, Yue Chang, Haifeng Tian, Xiaojun Guo\",\"doi\":\"10.1021/acs.iecr.4c04387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CuO-ZnO-TiO<sub>2</sub> was prepared by ultrasound-assisted coprecipitation. Its catalytic performance in the liquid-phase oxidation of cumene with oxygen to cumene hydroperoxide (CHP) was studied. Under the reaction conditions of CuO:ZnO:TiO<sub>2</sub> molar ratio of 3:1:1.33, feed ratio (catalyst/cumene) of 7.5 mg/mL, reaction temperature of 85 °C, reaction time of 7 h, and oxygen flow rate of 15 mL/min, the conversion of cumene was 37.2% and the selectivity of CHP was 94.5%. Characterization by XRD, SEM, TEM, EDS, and N<sub>2</sub> adsorption/desorption showed 3CuO-ZnO-TiO<sub>2</sub> was concentrated with a particle size of about 50 nm, specific area of about 110 m<sup>2</sup>/g with a pore volume of 0.0048 cm<sup>3</sup>/g, and high dispersion of active components. XPS and O<sub>2</sub>-TPD characterization indicated that 3CuO-ZnO-TiO<sub>2</sub> contains a large amount of lattice oxygen and reactive oxygen species. DFT simulation indicated ROO· is more easily generated and more likely to bind to the CuO-ZnO surface to facilitate oxidation of cumene to cumene peroxides.\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.iecr.4c04387\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c04387","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用超声辅助共沉淀法制备CuO-ZnO-TiO2。研究了其在氧液相氧化异丙苯制过氧化异丙苯(CHP)中的催化性能。在CuO:ZnO:TiO2的摩尔比为3:1:1.33,进料比(催化剂/异丙苯)为7.5 mg/mL,反应温度为85℃,反应时间为7 h,氧气流量为15 mL/min的条件下,异丙苯的转化率为37.2%,CHP的选择性为94.5%。通过XRD、SEM、TEM、EDS、N2吸附/脱附等表征表明,3CuO-ZnO-TiO2被浓缩,粒径约为50 nm,比面积约为110 m2/g,孔体积为0.0048 cm3/g,活性成分高度分散。XPS和O2-TPD表征表明,3CuO-ZnO-TiO2中含有大量的晶格氧和活性氧。DFT模拟表明,ROO·更容易生成,更容易与CuO-ZnO表面结合,促进异丙烯氧化成异丙烯过氧化物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Application, Characterization, and Simulation of CuO-ZnO-TiO2 for Catalytic Oxidation of Cumene to Cumene Hydroperoxide

Application, Characterization, and Simulation of CuO-ZnO-TiO2 for Catalytic Oxidation of Cumene to Cumene Hydroperoxide
CuO-ZnO-TiO2 was prepared by ultrasound-assisted coprecipitation. Its catalytic performance in the liquid-phase oxidation of cumene with oxygen to cumene hydroperoxide (CHP) was studied. Under the reaction conditions of CuO:ZnO:TiO2 molar ratio of 3:1:1.33, feed ratio (catalyst/cumene) of 7.5 mg/mL, reaction temperature of 85 °C, reaction time of 7 h, and oxygen flow rate of 15 mL/min, the conversion of cumene was 37.2% and the selectivity of CHP was 94.5%. Characterization by XRD, SEM, TEM, EDS, and N2 adsorption/desorption showed 3CuO-ZnO-TiO2 was concentrated with a particle size of about 50 nm, specific area of about 110 m2/g with a pore volume of 0.0048 cm3/g, and high dispersion of active components. XPS and O2-TPD characterization indicated that 3CuO-ZnO-TiO2 contains a large amount of lattice oxygen and reactive oxygen species. DFT simulation indicated ROO· is more easily generated and more likely to bind to the CuO-ZnO surface to facilitate oxidation of cumene to cumene peroxides.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信