在理论指导下设计表面增强型镍锰硅原子位催化剂,通过降解高电离电位有机污染物实现高效海水电解

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xudong Hu, Shuo Cheng, Usman Farooq, Izaz Ul Ul islam, Xinhai Wang
{"title":"在理论指导下设计表面增强型镍锰硅原子位催化剂,通过降解高电离电位有机污染物实现高效海水电解","authors":"Xudong Hu, Shuo Cheng, Usman Farooq, Izaz Ul Ul islam, Xinhai Wang","doi":"10.1002/anie.202505094","DOIUrl":null,"url":null,"abstract":"Facing energy shortages and hard‐to‐degrade chemical pollution, especially high ionization potential (IP) organic pollutants, this study developed a novel photoelectrocatalyst, Ni‐Mn@OBN, for degrading IP pollutants in seawater and generating hydrogen. Incorporating Ni‐Mn dual atoms into an O‐doped boron nitride (OBN) framework, Ni‐Mn@OBN shows excellent stability and HER performance. Density functional theory (DFT) analysis revealed its low Gibbs free energy change (ΔGH* = 0.03 eV) for the HER, outperforming Pt (111). Achieving an ultra‐low overpotential of 43.8 mV at 500 mA cm⁻² under AM 1.5 G simulated light surpasses commercial Pt/C catalysts. High IP pollutants enhance hydrogen evolution rates, indicating a synergistic effect. Theoretical calculations elucidated the interplay between seawater electrolytes and high IP values on the photoelectrocatalytic performance. Ni‐Mn@OBN demonstrated excellent stability and a solar‐to‐hydrogen (STH) efficiency of 3.72%, offering a sustainable solution for marine pollution control and clean energy production.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"106 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theory‐guided Design of Surface‐Enhanced Ni‐Mn Diatomic Site Catalysts for Efficient Seawater Electrolysis via the Degradation of High Ionization Potential Organic Pollutants\",\"authors\":\"Xudong Hu, Shuo Cheng, Usman Farooq, Izaz Ul Ul islam, Xinhai Wang\",\"doi\":\"10.1002/anie.202505094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facing energy shortages and hard‐to‐degrade chemical pollution, especially high ionization potential (IP) organic pollutants, this study developed a novel photoelectrocatalyst, Ni‐Mn@OBN, for degrading IP pollutants in seawater and generating hydrogen. Incorporating Ni‐Mn dual atoms into an O‐doped boron nitride (OBN) framework, Ni‐Mn@OBN shows excellent stability and HER performance. Density functional theory (DFT) analysis revealed its low Gibbs free energy change (ΔGH* = 0.03 eV) for the HER, outperforming Pt (111). Achieving an ultra‐low overpotential of 43.8 mV at 500 mA cm⁻² under AM 1.5 G simulated light surpasses commercial Pt/C catalysts. High IP pollutants enhance hydrogen evolution rates, indicating a synergistic effect. Theoretical calculations elucidated the interplay between seawater electrolytes and high IP values on the photoelectrocatalytic performance. Ni‐Mn@OBN demonstrated excellent stability and a solar‐to‐hydrogen (STH) efficiency of 3.72%, offering a sustainable solution for marine pollution control and clean energy production.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202505094\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202505094","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

面对能源短缺和难以降解的化学污染,特别是高电离势(IP)有机污染物,本研究开发了一种新型光电催化剂Ni‐Mn@OBN,用于降解海水中的IP污染物并产生氢气。将Ni - Mn双原子加入到O掺杂氮化硼(OBN)框架中,Ni - Mn@OBN表现出优异的稳定性和HER性能。密度泛函理论(DFT)分析表明,HER具有较低的吉布斯自由能变化(ΔGH* = 0.03 eV),优于Pt(111)。在AM 1.5 G模拟光下,在500 mA cm(⁻²)下实现43.8 mV的超低过电位,超过了商用Pt/C催化剂。高IP污染物提高了析氢速率,表明协同效应。理论计算阐明了海水电解质和高IP值对光电催化性能的相互作用。Ni‐Mn@OBN表现出优异的稳定性和3.72%的太阳能制氢效率,为海洋污染控制和清洁能源生产提供了可持续的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theory‐guided Design of Surface‐Enhanced Ni‐Mn Diatomic Site Catalysts for Efficient Seawater Electrolysis via the Degradation of High Ionization Potential Organic Pollutants
Facing energy shortages and hard‐to‐degrade chemical pollution, especially high ionization potential (IP) organic pollutants, this study developed a novel photoelectrocatalyst, Ni‐Mn@OBN, for degrading IP pollutants in seawater and generating hydrogen. Incorporating Ni‐Mn dual atoms into an O‐doped boron nitride (OBN) framework, Ni‐Mn@OBN shows excellent stability and HER performance. Density functional theory (DFT) analysis revealed its low Gibbs free energy change (ΔGH* = 0.03 eV) for the HER, outperforming Pt (111). Achieving an ultra‐low overpotential of 43.8 mV at 500 mA cm⁻² under AM 1.5 G simulated light surpasses commercial Pt/C catalysts. High IP pollutants enhance hydrogen evolution rates, indicating a synergistic effect. Theoretical calculations elucidated the interplay between seawater electrolytes and high IP values on the photoelectrocatalytic performance. Ni‐Mn@OBN demonstrated excellent stability and a solar‐to‐hydrogen (STH) efficiency of 3.72%, offering a sustainable solution for marine pollution control and clean energy production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信