ni-p 结构单片全无机过氧化物/有机串联太阳能电池的协同优化,实现 24% 以上的效率

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-08 DOI:10.1002/smll.202500134
Shan Jiang, Zhikuan Wang, Canling Xu, Jiancheng Yang, Yindi Wang, Ke Gong, Kaixuan Li, Tianying Liu, Zhan'ao Tan
{"title":"ni-p 结构单片全无机过氧化物/有机串联太阳能电池的协同优化,实现 24% 以上的效率","authors":"Shan Jiang,&nbsp;Zhikuan Wang,&nbsp;Canling Xu,&nbsp;Jiancheng Yang,&nbsp;Yindi Wang,&nbsp;Ke Gong,&nbsp;Kaixuan Li,&nbsp;Tianying Liu,&nbsp;Zhan'ao Tan","doi":"10.1002/smll.202500134","DOIUrl":null,"url":null,"abstract":"<p>CsPbI<sub>2</sub>Br-based perovskite solar cells (PSCs) garner significant attention in recent years due to their superior thermal stability compared to the organic–inorganic hybrid counterparts. Besides, with a bandgap of 1.92 eV making CsPbI<sub>2</sub>Br ideal candidates for combining with organic semiconductors to construct perovskite/organic tandem solar cells (TSCs), which achieve complementary absorption and high power conversion efficiency (PCE). However, the severe voltage loss at the interconnection layer (ICL) and unbalanced current of the subcells restrict the efficiency improvement of perovskite/organic TSCs. Herein, n-i-p structured monolithic all-inorganic perovskite/organic TSC is constructed with structure of ITO/Cl@MZO/CsPbI<sub>2</sub>Br/PM6/MoO<sub>3</sub>/Ag/PFN-Br/PM6:BTP-BO-4Cl:PC<sub>71</sub>BM/MoO<sub>3</sub> /Ag. The thickness of the CsPbI<sub>2</sub>Br layer in the front subcell and the ratio of PM6:BTP-BO-4Cl:PC<sub>71</sub> BM in the rear subcell are optimized to simultaneously achieve higher <i>J<sub>sc</sub></i>. Instead of unstable Spiro-OMeTAD, PM6 is employed as the hole transport material (HTM), and the ICL is fine-tuned to ensure a high fill factor (FF) and small open-circuit voltage (<i>V<sub>oc</sub></i>) loss in the TSC. As a result, a remarkable PCE of 24.10%, along with a high <i>J<sub>sc</sub></i> of 13.90 mA cm<sup>−2</sup> and an FF of 80.97% are achieved, among the best performance for CsPbI<sub>2</sub>Br-based n-i-p structured TSCs. Furthermore, the TSC exhibits outstanding stability under atmospheric conditions.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 22","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Optimization of n-i-p Structured Monolithic All-Inorganic Perovskite/Organic Tandem Solar Cells Achieving Efficiency over 24%\",\"authors\":\"Shan Jiang,&nbsp;Zhikuan Wang,&nbsp;Canling Xu,&nbsp;Jiancheng Yang,&nbsp;Yindi Wang,&nbsp;Ke Gong,&nbsp;Kaixuan Li,&nbsp;Tianying Liu,&nbsp;Zhan'ao Tan\",\"doi\":\"10.1002/smll.202500134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>CsPbI<sub>2</sub>Br-based perovskite solar cells (PSCs) garner significant attention in recent years due to their superior thermal stability compared to the organic–inorganic hybrid counterparts. Besides, with a bandgap of 1.92 eV making CsPbI<sub>2</sub>Br ideal candidates for combining with organic semiconductors to construct perovskite/organic tandem solar cells (TSCs), which achieve complementary absorption and high power conversion efficiency (PCE). However, the severe voltage loss at the interconnection layer (ICL) and unbalanced current of the subcells restrict the efficiency improvement of perovskite/organic TSCs. Herein, n-i-p structured monolithic all-inorganic perovskite/organic TSC is constructed with structure of ITO/Cl@MZO/CsPbI<sub>2</sub>Br/PM6/MoO<sub>3</sub>/Ag/PFN-Br/PM6:BTP-BO-4Cl:PC<sub>71</sub>BM/MoO<sub>3</sub> /Ag. The thickness of the CsPbI<sub>2</sub>Br layer in the front subcell and the ratio of PM6:BTP-BO-4Cl:PC<sub>71</sub> BM in the rear subcell are optimized to simultaneously achieve higher <i>J<sub>sc</sub></i>. Instead of unstable Spiro-OMeTAD, PM6 is employed as the hole transport material (HTM), and the ICL is fine-tuned to ensure a high fill factor (FF) and small open-circuit voltage (<i>V<sub>oc</sub></i>) loss in the TSC. As a result, a remarkable PCE of 24.10%, along with a high <i>J<sub>sc</sub></i> of 13.90 mA cm<sup>−2</sup> and an FF of 80.97% are achieved, among the best performance for CsPbI<sub>2</sub>Br-based n-i-p structured TSCs. Furthermore, the TSC exhibits outstanding stability under atmospheric conditions.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 22\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202500134\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202500134","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

cspbi2br基钙钛矿太阳能电池(PSCs)近年来因其与有机-无机杂化太阳能电池相比具有优越的热稳定性而受到广泛关注。此外,CsPbI2Br的带隙为1.92 eV,是与有机半导体结合构建钙钛矿/有机串联太阳能电池(TSCs)的理想候选材料,可实现互补吸收和高功率转换效率(PCE)。然而,互连层严重的电压损失和亚电池的电流不平衡限制了钙钛矿/有机tsc效率的提高。本文以ITO/Cl@MZO/CsPbI2Br/PM6/MoO3/Ag/PFN-Br/PM6:BTP-BO-4Cl:PC71BM/MoO3 /Ag为结构,构建了n-i-p结构的单片全无机钙钛矿/有机TSC。通过优化前亚电池CsPbI2Br层的厚度和后亚电池PM6:BTP-BO-4Cl:PC71 BM的比例,同时获得更高的Jsc。PM6取代了不稳定的Spiro-OMeTAD,作为空穴传输材料(HTM), ICL经过微调,以确保TSC中的高填充因子(FF)和小开路电压(Voc)损失。结果表明,该材料的PCE为24.10%,Jsc为13.90 mA cm−2,FF为80.97%,是cspbi2br基n-i-p结构tsc中性能最好的材料之一。此外,TSC在大气条件下表现出出色的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic Optimization of n-i-p Structured Monolithic All-Inorganic Perovskite/Organic Tandem Solar Cells Achieving Efficiency over 24%

Synergistic Optimization of n-i-p Structured Monolithic All-Inorganic Perovskite/Organic Tandem Solar Cells Achieving Efficiency over 24%

CsPbI2Br-based perovskite solar cells (PSCs) garner significant attention in recent years due to their superior thermal stability compared to the organic–inorganic hybrid counterparts. Besides, with a bandgap of 1.92 eV making CsPbI2Br ideal candidates for combining with organic semiconductors to construct perovskite/organic tandem solar cells (TSCs), which achieve complementary absorption and high power conversion efficiency (PCE). However, the severe voltage loss at the interconnection layer (ICL) and unbalanced current of the subcells restrict the efficiency improvement of perovskite/organic TSCs. Herein, n-i-p structured monolithic all-inorganic perovskite/organic TSC is constructed with structure of ITO/Cl@MZO/CsPbI2Br/PM6/MoO3/Ag/PFN-Br/PM6:BTP-BO-4Cl:PC71BM/MoO3 /Ag. The thickness of the CsPbI2Br layer in the front subcell and the ratio of PM6:BTP-BO-4Cl:PC71 BM in the rear subcell are optimized to simultaneously achieve higher Jsc. Instead of unstable Spiro-OMeTAD, PM6 is employed as the hole transport material (HTM), and the ICL is fine-tuned to ensure a high fill factor (FF) and small open-circuit voltage (Voc) loss in the TSC. As a result, a remarkable PCE of 24.10%, along with a high Jsc of 13.90 mA cm−2 and an FF of 80.97% are achieved, among the best performance for CsPbI2Br-based n-i-p structured TSCs. Furthermore, the TSC exhibits outstanding stability under atmospheric conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信