三重分层析出和锯齿状晶界强化无钴中熵合金

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Peng Sang, Ningning Liang, Yi Liu, Lei Gu, Zan Zhang and Yongsheng Li
{"title":"三重分层析出和锯齿状晶界强化无钴中熵合金","authors":"Peng Sang, Ningning Liang, Yi Liu, Lei Gu, Zan Zhang and Yongsheng Li","doi":"10.1039/D5TA01907A","DOIUrl":null,"url":null,"abstract":"<p >Microstructure design effectively achieves strength-ductility synergy in high/medium entropy alloys (H/MEAs). A new type of non-equiatomic FeCrNiAl<small><sub>0.3</sub></small>V<small><sub>0.1</sub></small>Ti<small><sub>0.2</sub></small> (Al3V1Ti2) MEA was designed and prepared in an as-cast state; the unique microstructures consist of high-density hierarchical L2<small><sub>1</sub></small> nanoparticles and serrated grain boundaries (SGBs). Using Ti to replace part of V in the Al3V3 (FeCrNiAl<small><sub>0.3</sub></small>V<small><sub>0.3</sub></small>) alloy, the Al3V1Ti2 alloy obtained two additional L2<small><sub>1</sub></small> phases in nanospherical and lamellar shapes in addition to the near-spherical sub-micron L2<small><sub>1</sub></small> phase of the Al3V3 alloy. The triple hierarchical precipitation (THP) and SGBs in Al3V1Ti2 MEA contribute to its super-strength and plastic properties: the compressive yield strength reaches 1.15 GPa, the maximum strength is 3.02 GPa, and elongation is maintained at 24%. The mechanical properties are superior to most of the FeCrAlNiCo and FeCrNiAl-based HEAs. These results indicate that the Co-free low-cost H/MEAs designed using multiple microstructure optimisation strategies are promising new systems for engineering applications.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 20","pages":" 15111-15117"},"PeriodicalIF":9.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triple hierarchical precipitation and serrated grain boundaries strengthened co-free medium-entropy alloys†\",\"authors\":\"Peng Sang, Ningning Liang, Yi Liu, Lei Gu, Zan Zhang and Yongsheng Li\",\"doi\":\"10.1039/D5TA01907A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Microstructure design effectively achieves strength-ductility synergy in high/medium entropy alloys (H/MEAs). A new type of non-equiatomic FeCrNiAl<small><sub>0.3</sub></small>V<small><sub>0.1</sub></small>Ti<small><sub>0.2</sub></small> (Al3V1Ti2) MEA was designed and prepared in an as-cast state; the unique microstructures consist of high-density hierarchical L2<small><sub>1</sub></small> nanoparticles and serrated grain boundaries (SGBs). Using Ti to replace part of V in the Al3V3 (FeCrNiAl<small><sub>0.3</sub></small>V<small><sub>0.3</sub></small>) alloy, the Al3V1Ti2 alloy obtained two additional L2<small><sub>1</sub></small> phases in nanospherical and lamellar shapes in addition to the near-spherical sub-micron L2<small><sub>1</sub></small> phase of the Al3V3 alloy. The triple hierarchical precipitation (THP) and SGBs in Al3V1Ti2 MEA contribute to its super-strength and plastic properties: the compressive yield strength reaches 1.15 GPa, the maximum strength is 3.02 GPa, and elongation is maintained at 24%. The mechanical properties are superior to most of the FeCrAlNiCo and FeCrNiAl-based HEAs. These results indicate that the Co-free low-cost H/MEAs designed using multiple microstructure optimisation strategies are promising new systems for engineering applications.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 20\",\"pages\":\" 15111-15117\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta01907a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta01907a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

微结构设计可有效实现高/中熵合金的强度-电导率协同效应。我们设计并制备了一种新型非等原子铁铬镍铝 0.3V0.1Ti0.2 中熵合金(Al3V1Ti2 MEA),其独特的微观结构由高密度分层 L21 纳米颗粒和锯齿状晶界组成。通过用 Ti 替代 Al3V3(FeCrNiAl0.3V0.3)合金中的部分 V,Al3V1Ti2 合金在 Al3V3 合金中的近球形亚微米级 L21 相的基础上,又获得了两个近球形纳米和片状的 L21 相。Al3V1Ti2 MEA 中的三重分层析出(THP)和锯齿状晶界为其提供了超强度和塑性性能,抗压屈服强度达到 1.15 GPa,最大强度为 3.04 GPa,伸长率保持在 24%。其机械性能优于大多数铁铬铝镍钴和铁铬铝镍基 HEA。这些结果表明,含 THP 的无钴低成本高/中熵合金是一种很有前途的工程应用新体系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Triple hierarchical precipitation and serrated grain boundaries strengthened co-free medium-entropy alloys†

Triple hierarchical precipitation and serrated grain boundaries strengthened co-free medium-entropy alloys†

Microstructure design effectively achieves strength-ductility synergy in high/medium entropy alloys (H/MEAs). A new type of non-equiatomic FeCrNiAl0.3V0.1Ti0.2 (Al3V1Ti2) MEA was designed and prepared in an as-cast state; the unique microstructures consist of high-density hierarchical L21 nanoparticles and serrated grain boundaries (SGBs). Using Ti to replace part of V in the Al3V3 (FeCrNiAl0.3V0.3) alloy, the Al3V1Ti2 alloy obtained two additional L21 phases in nanospherical and lamellar shapes in addition to the near-spherical sub-micron L21 phase of the Al3V3 alloy. The triple hierarchical precipitation (THP) and SGBs in Al3V1Ti2 MEA contribute to its super-strength and plastic properties: the compressive yield strength reaches 1.15 GPa, the maximum strength is 3.02 GPa, and elongation is maintained at 24%. The mechanical properties are superior to most of the FeCrAlNiCo and FeCrNiAl-based HEAs. These results indicate that the Co-free low-cost H/MEAs designed using multiple microstructure optimisation strategies are promising new systems for engineering applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信