从大数据到智能决策:肾脏风险评估中的人工智能

IF 28.6 1区 医学 Q1 UROLOGY & NEPHROLOGY
Devon A. Barnes, Luiz Ladeira, Rosalinde Masereeuw
{"title":"从大数据到智能决策:肾脏风险评估中的人工智能","authors":"Devon A. Barnes, Luiz Ladeira, Rosalinde Masereeuw","doi":"10.1038/s41581-025-00962-1","DOIUrl":null,"url":null,"abstract":"Artificial intelligence approaches that link patient data with chemical-induced kidney injury patterns are revolutionizing nephrotoxicity risk assessment. Substantial progress has been made in the development of integrated approaches that leverage big data, molecular profiles and toxicological understanding to identify at-risk patients, provide insights into molecular mechanisms and advance predictive nephrology.","PeriodicalId":19059,"journal":{"name":"Nature Reviews Nephrology","volume":"28 1","pages":""},"PeriodicalIF":28.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From big data to smart decisions: artificial intelligence in kidney risk assessment\",\"authors\":\"Devon A. Barnes, Luiz Ladeira, Rosalinde Masereeuw\",\"doi\":\"10.1038/s41581-025-00962-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence approaches that link patient data with chemical-induced kidney injury patterns are revolutionizing nephrotoxicity risk assessment. Substantial progress has been made in the development of integrated approaches that leverage big data, molecular profiles and toxicological understanding to identify at-risk patients, provide insights into molecular mechanisms and advance predictive nephrology.\",\"PeriodicalId\":19059,\"journal\":{\"name\":\"Nature Reviews Nephrology\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":28.6000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Nephrology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41581-025-00962-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41581-025-00962-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人工智能方法将患者数据与化学诱导的肾损伤模式联系起来,正在彻底改变肾毒性风险评估。综合方法的发展取得了实质性进展,这些方法利用大数据、分子谱和毒理学知识来识别高危患者,提供分子机制的见解,并推进预测肾病学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From big data to smart decisions: artificial intelligence in kidney risk assessment
Artificial intelligence approaches that link patient data with chemical-induced kidney injury patterns are revolutionizing nephrotoxicity risk assessment. Substantial progress has been made in the development of integrated approaches that leverage big data, molecular profiles and toxicological understanding to identify at-risk patients, provide insights into molecular mechanisms and advance predictive nephrology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Reviews Nephrology
Nature Reviews Nephrology 医学-泌尿学与肾脏学
CiteScore
39.00
自引率
1.20%
发文量
127
审稿时长
6-12 weeks
期刊介绍: Nature Reviews Nephrology aims to be the premier source of reviews and commentaries for the scientific communities it serves. It strives to publish authoritative, accessible articles. Articles are enhanced with clearly understandable figures, tables, and other display items. Nature Reviews Nephrology publishes Research Highlights, News & Views, Comments, Reviews, Perspectives, and Consensus Statements. The content is relevant to nephrologists and basic science researchers. The broad scope of the journal ensures that the work reaches the widest possible audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信