构建晶界稳定Cu0/Cu+界面位,实现高效CO2还原反应

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2025-04-08 DOI:10.1002/aic.18829
Saiwu Yang, Yongjun Shen, Xiaoqing Mao, Congcong Li, Zhongliang Liu, Bin Wang, Delin Zhu, Huihui Li, Chunzhong Li
{"title":"构建晶界稳定Cu0/Cu+界面位,实现高效CO2还原反应","authors":"Saiwu Yang, Yongjun Shen, Xiaoqing Mao, Congcong Li, Zhongliang Liu, Bin Wang, Delin Zhu, Huihui Li, Chunzhong Li","doi":"10.1002/aic.18829","DOIUrl":null,"url":null,"abstract":"The electrochemical CO<jats:sub>2</jats:sub> reduction reaction (CO<jats:sub>2</jats:sub>RR) to multi‐carbon (C<jats:sub>2+</jats:sub>) products derived by renewable energy represents a promising strategy for mitigating CO<jats:sub>2</jats:sub> emissions. One of the intensively studied strategies is to stabilize Cu<jats:sup>+</jats:sup> species on catalysts to facilitate the adsorption of *CO intermediates. However, the reductive environment during CO<jats:sub>2</jats:sub>RR renders the Cu<jats:sup>+</jats:sup> species on the catalyst surface susceptible to reduction to Cu<jats:sup>0</jats:sup>. Here, we developed a GB‐Cu<jats:sub>2</jats:sub>O‐Cu catalyst featuring enriched grain boundaries via an <jats:italic>in situ</jats:italic> electrochemical reduction process to stabilize Cu<jats:sup>+</jats:sup> species, resulting in an abundance of Cu<jats:sup>0</jats:sup>/Cu<jats:sup>+</jats:sup> interfacial active sites. <jats:italic>In situ</jats:italic> x‐ray diffraction (XRD) and Raman spectroscopy further revealed that the presence of grain boundaries effectively shields the Cu<jats:sup>+</jats:sup> species on the catalyst surface from undergoing reduction during CO<jats:sub>2</jats:sub>RR, facilitating the concentration of *CO intermediates and thus promoting C‐C dimerization to C<jats:sub>2+</jats:sub> products.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"28 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing grain boundary to stabilize Cu0/Cu+ interfacial sites for efficient CO2 reduction reaction\",\"authors\":\"Saiwu Yang, Yongjun Shen, Xiaoqing Mao, Congcong Li, Zhongliang Liu, Bin Wang, Delin Zhu, Huihui Li, Chunzhong Li\",\"doi\":\"10.1002/aic.18829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrochemical CO<jats:sub>2</jats:sub> reduction reaction (CO<jats:sub>2</jats:sub>RR) to multi‐carbon (C<jats:sub>2+</jats:sub>) products derived by renewable energy represents a promising strategy for mitigating CO<jats:sub>2</jats:sub> emissions. One of the intensively studied strategies is to stabilize Cu<jats:sup>+</jats:sup> species on catalysts to facilitate the adsorption of *CO intermediates. However, the reductive environment during CO<jats:sub>2</jats:sub>RR renders the Cu<jats:sup>+</jats:sup> species on the catalyst surface susceptible to reduction to Cu<jats:sup>0</jats:sup>. Here, we developed a GB‐Cu<jats:sub>2</jats:sub>O‐Cu catalyst featuring enriched grain boundaries via an <jats:italic>in situ</jats:italic> electrochemical reduction process to stabilize Cu<jats:sup>+</jats:sup> species, resulting in an abundance of Cu<jats:sup>0</jats:sup>/Cu<jats:sup>+</jats:sup> interfacial active sites. <jats:italic>In situ</jats:italic> x‐ray diffraction (XRD) and Raman spectroscopy further revealed that the presence of grain boundaries effectively shields the Cu<jats:sup>+</jats:sup> species on the catalyst surface from undergoing reduction during CO<jats:sub>2</jats:sub>RR, facilitating the concentration of *CO intermediates and thus promoting C‐C dimerization to C<jats:sub>2+</jats:sub> products.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18829\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18829","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

可再生能源衍生的多碳(C2+)产物的电化学CO2还原反应(CO2RR)是一种很有前途的减少CO2排放的策略。在催化剂上稳定Cu+以促进*CO中间体的吸附是目前研究较多的策略之一。然而,CO2RR过程中的还原环境使得催化剂表面的Cu+物质容易被还原成Cu0。在这里,我们开发了一种GB‐Cu2O‐Cu催化剂,该催化剂通过原位电化学还原过程具有丰富的晶界,以稳定Cu+物种,从而产生丰富的Cu0/Cu+界面活性位点。原位x射线衍射(XRD)和拉曼光谱进一步表明,在CO2RR过程中,晶粒边界的存在有效地屏蔽了催化剂表面的Cu+物种,从而促进了*CO中间体的浓度,从而促进了C‐C二聚化成C2+产物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing grain boundary to stabilize Cu0/Cu+ interfacial sites for efficient CO2 reduction reaction
The electrochemical CO2 reduction reaction (CO2RR) to multi‐carbon (C2+) products derived by renewable energy represents a promising strategy for mitigating CO2 emissions. One of the intensively studied strategies is to stabilize Cu+ species on catalysts to facilitate the adsorption of *CO intermediates. However, the reductive environment during CO2RR renders the Cu+ species on the catalyst surface susceptible to reduction to Cu0. Here, we developed a GB‐Cu2O‐Cu catalyst featuring enriched grain boundaries via an in situ electrochemical reduction process to stabilize Cu+ species, resulting in an abundance of Cu0/Cu+ interfacial active sites. In situ x‐ray diffraction (XRD) and Raman spectroscopy further revealed that the presence of grain boundaries effectively shields the Cu+ species on the catalyst surface from undergoing reduction during CO2RR, facilitating the concentration of *CO intermediates and thus promoting C‐C dimerization to C2+ products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信