Geo2ComMap:基于深度学习的基于地理数据的MIMO吞吐量预测

IF 5.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Fan-Hao Lin;Tzu-Hao Huang;Chao-Kai Wen;Trung Q. Duong
{"title":"Geo2ComMap:基于深度学习的基于地理数据的MIMO吞吐量预测","authors":"Fan-Hao Lin;Tzu-Hao Huang;Chao-Kai Wen;Trung Q. Duong","doi":"10.1109/LWC.2025.3558198","DOIUrl":null,"url":null,"abstract":"Accurate communication performance prediction is crucial for wireless applications such as network deployment and resource management. Unlike conventional systems with a single transceiver antenna, throughput (Tput) estimation in antenna array-based multiple-output multiple-input (MIMO) systems is computationally intensive, i.e., requiring analysis of channel matrices, rank conditions, and spatial channel quality. These calculations impose significant computational and time burdens. This letter introduces Geo2ComMap, a deep learning-based framework that leverages geographic databases to efficiently estimate multiple communication metrics across an entire area in MIMO systems using only sparse measurements. To mitigate extreme prediction errors, we propose a sparse sampling strategy. Extensive evaluations demonstrate that Geo2ComMap accurately predicts full-area communication metrics, achieving a median absolute error of 27.35 Mbps for Tput values ranging from 0 to 1900 Mbps.","PeriodicalId":13343,"journal":{"name":"IEEE Wireless Communications Letters","volume":"14 6","pages":"1831-1835"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geo2ComMap: Deep Learning-Based MIMO Throughput Prediction Using Geographic Data\",\"authors\":\"Fan-Hao Lin;Tzu-Hao Huang;Chao-Kai Wen;Trung Q. Duong\",\"doi\":\"10.1109/LWC.2025.3558198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate communication performance prediction is crucial for wireless applications such as network deployment and resource management. Unlike conventional systems with a single transceiver antenna, throughput (Tput) estimation in antenna array-based multiple-output multiple-input (MIMO) systems is computationally intensive, i.e., requiring analysis of channel matrices, rank conditions, and spatial channel quality. These calculations impose significant computational and time burdens. This letter introduces Geo2ComMap, a deep learning-based framework that leverages geographic databases to efficiently estimate multiple communication metrics across an entire area in MIMO systems using only sparse measurements. To mitigate extreme prediction errors, we propose a sparse sampling strategy. Extensive evaluations demonstrate that Geo2ComMap accurately predicts full-area communication metrics, achieving a median absolute error of 27.35 Mbps for Tput values ranging from 0 to 1900 Mbps.\",\"PeriodicalId\":13343,\"journal\":{\"name\":\"IEEE Wireless Communications Letters\",\"volume\":\"14 6\",\"pages\":\"1831-1835\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Wireless Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10950386/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10950386/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

准确的通信性能预测对于网络部署和资源管理等无线应用至关重要。与传统的单天线收发系统不同,基于天线阵列的多输出多输入(MIMO)系统的吞吐量(Tput)估计是计算密集型的,即需要分析信道矩阵、秩条件和空间信道质量。这些计算带来了巨大的计算和时间负担。这封信介绍了Geo2ComMap,这是一个基于深度学习的框架,它利用地理数据库,仅使用稀疏测量就能有效地估计MIMO系统中整个区域的多个通信指标。为了减少极端的预测误差,我们提出了一种稀疏采样策略。广泛的评估表明,Geo2ComMap准确地预测了整个区域的通信指标,在0到1900 Mbps的输出值范围内,实现了27.35 Mbps的中位数绝对误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geo2ComMap: Deep Learning-Based MIMO Throughput Prediction Using Geographic Data
Accurate communication performance prediction is crucial for wireless applications such as network deployment and resource management. Unlike conventional systems with a single transceiver antenna, throughput (Tput) estimation in antenna array-based multiple-output multiple-input (MIMO) systems is computationally intensive, i.e., requiring analysis of channel matrices, rank conditions, and spatial channel quality. These calculations impose significant computational and time burdens. This letter introduces Geo2ComMap, a deep learning-based framework that leverages geographic databases to efficiently estimate multiple communication metrics across an entire area in MIMO systems using only sparse measurements. To mitigate extreme prediction errors, we propose a sparse sampling strategy. Extensive evaluations demonstrate that Geo2ComMap accurately predicts full-area communication metrics, achieving a median absolute error of 27.35 Mbps for Tput values ranging from 0 to 1900 Mbps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Wireless Communications Letters
IEEE Wireless Communications Letters Engineering-Electrical and Electronic Engineering
CiteScore
12.30
自引率
6.30%
发文量
481
期刊介绍: IEEE Wireless Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of wireless communications. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of wireless communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信