P. T. Quyen, S. Cao, N. T. Hong Van, Ankur Nath, T. V. Ngoc
{"title":"轻子混合角θ23的精度及其对风味模型的意义","authors":"P. T. Quyen, S. Cao, N. T. Hong Van, Ankur Nath, T. V. Ngoc","doi":"10.1103/physrevd.111.073003","DOIUrl":null,"url":null,"abstract":"Among three leptonic mixing angles, θ</a:mi>23</a:mn></a:msub></a:math>, which characterizes the fractional contribution of two flavor eigenstates <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>ν</c:mi><c:mi>μ</c:mi></c:msub></c:math> and <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msub><e:mi>ν</e:mi><e:mi>τ</e:mi></e:msub></e:math> to the third mass eigenstate <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msub><g:mi>ν</g:mi><g:mn>3</g:mn></g:msub></g:math>, is known to be the largest but least precisely measured. The work investigates the possible reach of <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msub><i:mi>θ</i:mi><i:mn>23</i:mn></i:msub></i:math> precision with two forthcoming gigantic accelerator-based long-baseline neutrino experiments, namely, Hyper-Kamiokande (T2HK) and the Deep Underground Neutrino Experiment (DUNE), as well as a possible joint analyses of future neutrino facilities. Our simulation yields that each experiment will definitely establish the octant of <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:msub><k:mi>θ</k:mi><k:mn>23</k:mn></k:msub></k:math> for all values within a <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mrow><m:mn>1</m:mn><m:mi>σ</m:mi></m:mrow></m:math> parameter interval, while considering the current limitation. However, if the actual value is <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mn>0.48</o:mn><o:mo>≤</o:mo><o:msup><o:mi>sin</o:mi><o:mn>2</o:mn></o:msup><o:msub><o:mi>θ</o:mi><o:mn>23</o:mn></o:msub><o:mo>≤</o:mo><o:mn>0.54</o:mn></o:math>, it becomes challenging for these two experiments to reject the maximal (<q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:msub><q:mi>θ</q:mi><q:mn>23</q:mn></q:msub><q:mo>=</q:mo><q:mi>π</q:mi><q:mo>/</q:mo><q:mn>4</q:mn></q:math>) hypothesis and conclude its octant. This octant-blind region can be further explored with the proposed facilities European Spallation Source Neutrino Super Beam and Neutrino Factory. The accurate determination of the mixing angle <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:msub><s:mi>θ</s:mi><s:mn>23</s:mn></s:msub></s:math>, as well as the accuracy of <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:msub><u:mi>δ</u:mi><u:mrow><u:mi>C</u:mi><u:mi>P</u:mi></u:mrow></u:msub></u:math>, is crucial for examining a certain category of discrete non-Abelian leptonic flavor models. Specifically, if <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mi>C</w:mi><w:mi>P</w:mi></w:math> is conserved in the leptonic sector, the combined analysis of T2HK and DUNE will rule out the majority of these models. However, if the <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:mi>C</y:mi><y:mi>P</y:mi></y:math> is maximally violated, a higher precision of δ</ab:mi>C</ab:mi>P</ab:mi></ab:mrow></ab:msub></ab:math> is necessary to test these flavor models. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"23 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precision of the leptonic mixing angle θ23 and its implications for the flavor models\",\"authors\":\"P. T. Quyen, S. Cao, N. T. Hong Van, Ankur Nath, T. V. Ngoc\",\"doi\":\"10.1103/physrevd.111.073003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among three leptonic mixing angles, θ</a:mi>23</a:mn></a:msub></a:math>, which characterizes the fractional contribution of two flavor eigenstates <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:msub><c:mi>ν</c:mi><c:mi>μ</c:mi></c:msub></c:math> and <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:msub><e:mi>ν</e:mi><e:mi>τ</e:mi></e:msub></e:math> to the third mass eigenstate <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:msub><g:mi>ν</g:mi><g:mn>3</g:mn></g:msub></g:math>, is known to be the largest but least precisely measured. The work investigates the possible reach of <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:msub><i:mi>θ</i:mi><i:mn>23</i:mn></i:msub></i:math> precision with two forthcoming gigantic accelerator-based long-baseline neutrino experiments, namely, Hyper-Kamiokande (T2HK) and the Deep Underground Neutrino Experiment (DUNE), as well as a possible joint analyses of future neutrino facilities. Our simulation yields that each experiment will definitely establish the octant of <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:msub><k:mi>θ</k:mi><k:mn>23</k:mn></k:msub></k:math> for all values within a <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mrow><m:mn>1</m:mn><m:mi>σ</m:mi></m:mrow></m:math> parameter interval, while considering the current limitation. However, if the actual value is <o:math xmlns:o=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><o:mn>0.48</o:mn><o:mo>≤</o:mo><o:msup><o:mi>sin</o:mi><o:mn>2</o:mn></o:msup><o:msub><o:mi>θ</o:mi><o:mn>23</o:mn></o:msub><o:mo>≤</o:mo><o:mn>0.54</o:mn></o:math>, it becomes challenging for these two experiments to reject the maximal (<q:math xmlns:q=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><q:msub><q:mi>θ</q:mi><q:mn>23</q:mn></q:msub><q:mo>=</q:mo><q:mi>π</q:mi><q:mo>/</q:mo><q:mn>4</q:mn></q:math>) hypothesis and conclude its octant. This octant-blind region can be further explored with the proposed facilities European Spallation Source Neutrino Super Beam and Neutrino Factory. The accurate determination of the mixing angle <s:math xmlns:s=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><s:msub><s:mi>θ</s:mi><s:mn>23</s:mn></s:msub></s:math>, as well as the accuracy of <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><u:msub><u:mi>δ</u:mi><u:mrow><u:mi>C</u:mi><u:mi>P</u:mi></u:mrow></u:msub></u:math>, is crucial for examining a certain category of discrete non-Abelian leptonic flavor models. Specifically, if <w:math xmlns:w=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><w:mi>C</w:mi><w:mi>P</w:mi></w:math> is conserved in the leptonic sector, the combined analysis of T2HK and DUNE will rule out the majority of these models. However, if the <y:math xmlns:y=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><y:mi>C</y:mi><y:mi>P</y:mi></y:math> is maximally violated, a higher precision of δ</ab:mi>C</ab:mi>P</ab:mi></ab:mrow></ab:msub></ab:math> is necessary to test these flavor models. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.073003\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.073003","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Precision of the leptonic mixing angle θ23 and its implications for the flavor models
Among three leptonic mixing angles, θ23, which characterizes the fractional contribution of two flavor eigenstates νμ and ντ to the third mass eigenstate ν3, is known to be the largest but least precisely measured. The work investigates the possible reach of θ23 precision with two forthcoming gigantic accelerator-based long-baseline neutrino experiments, namely, Hyper-Kamiokande (T2HK) and the Deep Underground Neutrino Experiment (DUNE), as well as a possible joint analyses of future neutrino facilities. Our simulation yields that each experiment will definitely establish the octant of θ23 for all values within a 1σ parameter interval, while considering the current limitation. However, if the actual value is 0.48≤sin2θ23≤0.54, it becomes challenging for these two experiments to reject the maximal (θ23=π/4) hypothesis and conclude its octant. This octant-blind region can be further explored with the proposed facilities European Spallation Source Neutrino Super Beam and Neutrino Factory. The accurate determination of the mixing angle θ23, as well as the accuracy of δCP, is crucial for examining a certain category of discrete non-Abelian leptonic flavor models. Specifically, if CP is conserved in the leptonic sector, the combined analysis of T2HK and DUNE will rule out the majority of these models. However, if the CP is maximally violated, a higher precision of δCP is necessary to test these flavor models. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.