通过在社交媒体上接触错误信息的个人对流行病传播的放大进行建模。

npj Complexity Pub Date : 2025-01-01 Epub Date: 2025-04-02 DOI:10.1038/s44260-025-00038-y
Matthew R DeVerna, Francesco Pierri, Yong-Yeol Ahn, Santo Fortunato, Alessandro Flammini, Filippo Menczer
{"title":"通过在社交媒体上接触错误信息的个人对流行病传播的放大进行建模。","authors":"Matthew R DeVerna, Francesco Pierri, Yong-Yeol Ahn, Santo Fortunato, Alessandro Flammini, Filippo Menczer","doi":"10.1038/s44260-025-00038-y","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how misinformation affects the spread of disease is crucial for public health, especially given recent research indicating that misinformation can increase vaccine hesitancy and discourage vaccine uptake. However, it is difficult to investigate the interaction between misinformation and epidemic outcomes due to the dearth of data-informed holistic epidemic models. Here, we employ an epidemic model that incorporates a large, mobility-informed physical contact network as well as the distribution of misinformed individuals across counties derived from social media data. The model allows us to simulate various scenarios to understand how epidemic spreading can be affected by misinformation spreading through one particular social media platform. Using this model, we compare a worst-case scenario, in which individuals become misinformed after a single exposure to low-credibility content, to a best-case scenario where the population is highly resilient to misinformation. We estimate the additional portion of the U.S. population that would become infected over the course of the COVID-19 epidemic in the worst-case scenario. This work can provide policymakers with insights about the potential harms of exposure to online vaccine misinformation.</p>","PeriodicalId":501707,"journal":{"name":"npj Complexity","volume":"2 1","pages":"11"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11964913/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modeling the amplification of epidemic spread by individuals exposed to misinformation on social media.\",\"authors\":\"Matthew R DeVerna, Francesco Pierri, Yong-Yeol Ahn, Santo Fortunato, Alessandro Flammini, Filippo Menczer\",\"doi\":\"10.1038/s44260-025-00038-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding how misinformation affects the spread of disease is crucial for public health, especially given recent research indicating that misinformation can increase vaccine hesitancy and discourage vaccine uptake. However, it is difficult to investigate the interaction between misinformation and epidemic outcomes due to the dearth of data-informed holistic epidemic models. Here, we employ an epidemic model that incorporates a large, mobility-informed physical contact network as well as the distribution of misinformed individuals across counties derived from social media data. The model allows us to simulate various scenarios to understand how epidemic spreading can be affected by misinformation spreading through one particular social media platform. Using this model, we compare a worst-case scenario, in which individuals become misinformed after a single exposure to low-credibility content, to a best-case scenario where the population is highly resilient to misinformation. We estimate the additional portion of the U.S. population that would become infected over the course of the COVID-19 epidemic in the worst-case scenario. This work can provide policymakers with insights about the potential harms of exposure to online vaccine misinformation.</p>\",\"PeriodicalId\":501707,\"journal\":{\"name\":\"npj Complexity\",\"volume\":\"2 1\",\"pages\":\"11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11964913/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44260-025-00038-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44260-025-00038-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解错误信息如何影响疾病传播对公共卫生至关重要,特别是考虑到最近的研究表明,错误信息会增加对疫苗的犹豫并阻碍疫苗的吸收。然而,由于缺乏基于数据的整体流行病模型,很难调查错误信息与流行病结果之间的相互作用。在这里,我们采用了一个流行病模型,该模型结合了一个大型的、流动性信息的身体接触网络,以及来自社交媒体数据的被误导的个人在各个国家的分布。该模型使我们能够模拟各种场景,以了解通过特定社交媒体平台传播的错误信息如何影响流行病的传播。使用这个模型,我们比较了最坏的情况,即个人在一次接触低可信度内容后被误导,以及最好的情况,即人们对错误信息具有高度的弹性。我们估计了在最坏的情况下,在COVID-19流行的过程中,美国人口中被感染的额外比例。这项工作可以为政策制定者提供有关接触在线疫苗错误信息的潜在危害的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling the amplification of epidemic spread by individuals exposed to misinformation on social media.

Understanding how misinformation affects the spread of disease is crucial for public health, especially given recent research indicating that misinformation can increase vaccine hesitancy and discourage vaccine uptake. However, it is difficult to investigate the interaction between misinformation and epidemic outcomes due to the dearth of data-informed holistic epidemic models. Here, we employ an epidemic model that incorporates a large, mobility-informed physical contact network as well as the distribution of misinformed individuals across counties derived from social media data. The model allows us to simulate various scenarios to understand how epidemic spreading can be affected by misinformation spreading through one particular social media platform. Using this model, we compare a worst-case scenario, in which individuals become misinformed after a single exposure to low-credibility content, to a best-case scenario where the population is highly resilient to misinformation. We estimate the additional portion of the U.S. population that would become infected over the course of the COVID-19 epidemic in the worst-case scenario. This work can provide policymakers with insights about the potential harms of exposure to online vaccine misinformation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信