{"title":"基于正则化最小裁剪二乘的小肠坏死近红外特征波段识别。","authors":"Jingzhi Li, Chenxi Peng, Yuxuan Hou, Guangzao Huang, Lechao Zhang, Xiaojing Chen, Zhonghao Xie, Shujat Ali, Libin Zhu, Xiaoqing Chen","doi":"10.1002/jbio.70023","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Hyperspectral imaging is a promising tool for identifying ischemic necrotic small intestine. To analyze the causes of small bowel necrosis, studying characteristic bands is crucial. However, differences in samples and spectral acquisition devices limit the availability of all bands for analysis, posing challenges in selecting bands adapted to individual variations. This study proposed a method based on the least trimmed squares algorithm, enhanced with regularization, to identify characteristic bands. The method successfully differentiated normal and necrotic tissue and analyzed necrosis causes, which originated from the same rabbit, different rabbits, and different necrosis durations. It identified 763 nm as the characteristic band, corresponding to the deoxyhemoglobin absorption peak. This approach offers accurate, automated band identification while addressing sample and device discrepancies, enabling the selection of more suitable characteristic bands.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 8","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Near-Infrared Characteristic Bands of Small Intestine Necrosis Based on Least Trimmed Squares With Regularization\",\"authors\":\"Jingzhi Li, Chenxi Peng, Yuxuan Hou, Guangzao Huang, Lechao Zhang, Xiaojing Chen, Zhonghao Xie, Shujat Ali, Libin Zhu, Xiaoqing Chen\",\"doi\":\"10.1002/jbio.70023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Hyperspectral imaging is a promising tool for identifying ischemic necrotic small intestine. To analyze the causes of small bowel necrosis, studying characteristic bands is crucial. However, differences in samples and spectral acquisition devices limit the availability of all bands for analysis, posing challenges in selecting bands adapted to individual variations. This study proposed a method based on the least trimmed squares algorithm, enhanced with regularization, to identify characteristic bands. The method successfully differentiated normal and necrotic tissue and analyzed necrosis causes, which originated from the same rabbit, different rabbits, and different necrosis durations. It identified 763 nm as the characteristic band, corresponding to the deoxyhemoglobin absorption peak. This approach offers accurate, automated band identification while addressing sample and device discrepancies, enabling the selection of more suitable characteristic bands.</p>\\n </div>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":\"18 8\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.70023\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.70023","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Identification of Near-Infrared Characteristic Bands of Small Intestine Necrosis Based on Least Trimmed Squares With Regularization
Hyperspectral imaging is a promising tool for identifying ischemic necrotic small intestine. To analyze the causes of small bowel necrosis, studying characteristic bands is crucial. However, differences in samples and spectral acquisition devices limit the availability of all bands for analysis, posing challenges in selecting bands adapted to individual variations. This study proposed a method based on the least trimmed squares algorithm, enhanced with regularization, to identify characteristic bands. The method successfully differentiated normal and necrotic tissue and analyzed necrosis causes, which originated from the same rabbit, different rabbits, and different necrosis durations. It identified 763 nm as the characteristic band, corresponding to the deoxyhemoglobin absorption peak. This approach offers accurate, automated band identification while addressing sample and device discrepancies, enabling the selection of more suitable characteristic bands.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.