超声辅助切割时皮质骨的瞬时切削力分析。

IF 1.7 4区 医学 Q4 BIOPHYSICS
Yuhao Zhai, Guangchao Han, Qingpeng Gao, Wei Bai
{"title":"超声辅助切割时皮质骨的瞬时切削力分析。","authors":"Yuhao Zhai, Guangchao Han, Qingpeng Gao, Wei Bai","doi":"10.1115/1.4068371","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasonically assisted cutting (UAC), a process characterized by high-performance material removal and enhanced surface finish, is widely employed in orthopedic surgery. However, variability in the mechanical properties of cortical bone may lead to unstable fractures and fluctuating cutting force during material removal, particularly under high-frequency vibration cutting. This study introduces a transient shear strength model that utilizes strain rate fluctuations to estimate cutting forces in the UAC process. The impact of varying osteon orientations and strain rate ranges on the yield strength of cortical bone are analyzed to elucidate changes in its mechanical properties under UAC conditions. Additionally, strain rates from conventional cutting (CC) and UAC, measured through digital image correlation (DIC), are compared with model predictions. The results demonstrate that the proposed model accurately predicts cutting forces and associated changes in thrust. This research offers a fresh insight into the dynamics of fluctuating forces during UAC, potentially inspiring advancements in orthopedic surgical instruments.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-26"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Transient Cutting Forces in Cortical Bone during Ultrasonically Assisted Cutting.\",\"authors\":\"Yuhao Zhai, Guangchao Han, Qingpeng Gao, Wei Bai\",\"doi\":\"10.1115/1.4068371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ultrasonically assisted cutting (UAC), a process characterized by high-performance material removal and enhanced surface finish, is widely employed in orthopedic surgery. However, variability in the mechanical properties of cortical bone may lead to unstable fractures and fluctuating cutting force during material removal, particularly under high-frequency vibration cutting. This study introduces a transient shear strength model that utilizes strain rate fluctuations to estimate cutting forces in the UAC process. The impact of varying osteon orientations and strain rate ranges on the yield strength of cortical bone are analyzed to elucidate changes in its mechanical properties under UAC conditions. Additionally, strain rates from conventional cutting (CC) and UAC, measured through digital image correlation (DIC), are compared with model predictions. The results demonstrate that the proposed model accurately predicts cutting forces and associated changes in thrust. This research offers a fresh insight into the dynamics of fluctuating forces during UAC, potentially inspiring advancements in orthopedic surgical instruments.</p>\",\"PeriodicalId\":54871,\"journal\":{\"name\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"1-26\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4068371\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4068371","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

超声辅助切割(UAC)是一种以高性能材料去除和增强表面光洁度为特点的工艺,在骨科手术中得到了广泛的应用。然而,皮质骨力学性能的变化可能导致不稳定的骨折和材料去除过程中切削力的波动,特别是在高频振动切削下。本研究引入了一种瞬态剪切强度模型,该模型利用应变率波动来估计UAC过程中的切削力。分析不同骨取向和应变速率范围对皮质骨屈服强度的影响,以阐明UAC条件下皮质骨力学性能的变化。此外,通过数字图像相关(DIC)测量的常规切割(CC)和UAC的应变率与模型预测进行了比较。结果表明,该模型能准确预测切削力和相关推力的变化。这项研究为UAC过程中波动力的动力学提供了新的见解,可能会激发骨科手术器械的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Transient Cutting Forces in Cortical Bone during Ultrasonically Assisted Cutting.

Ultrasonically assisted cutting (UAC), a process characterized by high-performance material removal and enhanced surface finish, is widely employed in orthopedic surgery. However, variability in the mechanical properties of cortical bone may lead to unstable fractures and fluctuating cutting force during material removal, particularly under high-frequency vibration cutting. This study introduces a transient shear strength model that utilizes strain rate fluctuations to estimate cutting forces in the UAC process. The impact of varying osteon orientations and strain rate ranges on the yield strength of cortical bone are analyzed to elucidate changes in its mechanical properties under UAC conditions. Additionally, strain rates from conventional cutting (CC) and UAC, measured through digital image correlation (DIC), are compared with model predictions. The results demonstrate that the proposed model accurately predicts cutting forces and associated changes in thrust. This research offers a fresh insight into the dynamics of fluctuating forces during UAC, potentially inspiring advancements in orthopedic surgical instruments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信