Fandi Ai, Jiayi Zeng, Qian Zhang, Mingjun Zhong, Meilin Chen, Yu Lu, Jing Cheng, Lei Chen, Fengxiao Bu, Huijun Yuan
{"title":"遗传诊断中的多核苷酸变异:来自11,467例听力损失的影响。","authors":"Fandi Ai, Jiayi Zeng, Qian Zhang, Mingjun Zhong, Meilin Chen, Yu Lu, Jing Cheng, Lei Chen, Fengxiao Bu, Huijun Yuan","doi":"10.1016/j.jgg.2025.03.012","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple nucleotide variants (MNVs) are frequently misannotated as separate single-nucleotide variants (SNVs) by widely utilized variant-calling pipelines, presenting substantial challenges in genetic testing and research. The role of MNVs in genetic diagnosis remains inadequately characterized, particularly within large disease cohorts. In this study, we comprehensively investigate codon-level MNVs (cMNVs) across 157 hearing loss (HL)-related genes in 11,467 HL cases and 7,258 controls from the Chinese Deafness Gene Consortium (CDGC) cohort. A total of 116 cMNVs are identified, occurring in 29.07% of HL cases. 56.03% of cMNVs exhibit functional consequences distinct from constituent SNVs. Moreover, amino acid substitutions exclusive to cMNVs cause more substantial physicochemical disruptions than those associated with SNVs. Notably, 51 cMNVs show pathogenicity classifications that diverge from at least one constituent SNV, impacting genetic interpretation in 145 cases. Pathogenicity interpretation of cMNV facilitates definitive genetic diagnoses in eight HL cases that would otherwise have been subject to misdiagnoses or missed diagnoses. These findings provide critical insights into the genomic characteristics, functional impacts, and diagnostic implications of cMNVs, underscoring their clinical significance in genetic diagnosis and emphasizing the necessity for comprehensive and accurate detection and interpretation of cMNVs in genetic testing and research.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple nucleotide variants in genetic diagnosis: implications from 11,467 cases of hearing loss.\",\"authors\":\"Fandi Ai, Jiayi Zeng, Qian Zhang, Mingjun Zhong, Meilin Chen, Yu Lu, Jing Cheng, Lei Chen, Fengxiao Bu, Huijun Yuan\",\"doi\":\"10.1016/j.jgg.2025.03.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple nucleotide variants (MNVs) are frequently misannotated as separate single-nucleotide variants (SNVs) by widely utilized variant-calling pipelines, presenting substantial challenges in genetic testing and research. The role of MNVs in genetic diagnosis remains inadequately characterized, particularly within large disease cohorts. In this study, we comprehensively investigate codon-level MNVs (cMNVs) across 157 hearing loss (HL)-related genes in 11,467 HL cases and 7,258 controls from the Chinese Deafness Gene Consortium (CDGC) cohort. A total of 116 cMNVs are identified, occurring in 29.07% of HL cases. 56.03% of cMNVs exhibit functional consequences distinct from constituent SNVs. Moreover, amino acid substitutions exclusive to cMNVs cause more substantial physicochemical disruptions than those associated with SNVs. Notably, 51 cMNVs show pathogenicity classifications that diverge from at least one constituent SNV, impacting genetic interpretation in 145 cases. Pathogenicity interpretation of cMNV facilitates definitive genetic diagnoses in eight HL cases that would otherwise have been subject to misdiagnoses or missed diagnoses. These findings provide critical insights into the genomic characteristics, functional impacts, and diagnostic implications of cMNVs, underscoring their clinical significance in genetic diagnosis and emphasizing the necessity for comprehensive and accurate detection and interpretation of cMNVs in genetic testing and research.</p>\",\"PeriodicalId\":54825,\"journal\":{\"name\":\"Journal of Genetics and Genomics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Genetics and Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jgg.2025.03.012\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2025.03.012","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Multiple nucleotide variants in genetic diagnosis: implications from 11,467 cases of hearing loss.
Multiple nucleotide variants (MNVs) are frequently misannotated as separate single-nucleotide variants (SNVs) by widely utilized variant-calling pipelines, presenting substantial challenges in genetic testing and research. The role of MNVs in genetic diagnosis remains inadequately characterized, particularly within large disease cohorts. In this study, we comprehensively investigate codon-level MNVs (cMNVs) across 157 hearing loss (HL)-related genes in 11,467 HL cases and 7,258 controls from the Chinese Deafness Gene Consortium (CDGC) cohort. A total of 116 cMNVs are identified, occurring in 29.07% of HL cases. 56.03% of cMNVs exhibit functional consequences distinct from constituent SNVs. Moreover, amino acid substitutions exclusive to cMNVs cause more substantial physicochemical disruptions than those associated with SNVs. Notably, 51 cMNVs show pathogenicity classifications that diverge from at least one constituent SNV, impacting genetic interpretation in 145 cases. Pathogenicity interpretation of cMNV facilitates definitive genetic diagnoses in eight HL cases that would otherwise have been subject to misdiagnoses or missed diagnoses. These findings provide critical insights into the genomic characteristics, functional impacts, and diagnostic implications of cMNVs, underscoring their clinical significance in genetic diagnosis and emphasizing the necessity for comprehensive and accurate detection and interpretation of cMNVs in genetic testing and research.
期刊介绍:
The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.