计算机断层显像衍生心肌放射组学检测严重主动脉瓣狭窄患者甲状腺素淀粉样变性。

IF 5.2 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Alexios S Antonopoulos, Ioannis Panagiotopoulos, Konstantinos Karampinos, Konstantinos Spargias, Charalampos Papastamos, Theodoros Tsampras, Nikolaos Axypolitos, Spyridon Simantiris, Georgios Benetos, Nikolaos Ktenopoulos, Panagiotis Kanatas, Maria Koutelou, Konstantinos Toutouzas, Marios Ioannides, Christos Eftychiou, Christos Mourmouris, Thomas Vrachliotis, Charalambos Antoniades, Konstantinos Tsioufis, Charalambos Vlachopoulos
{"title":"计算机断层显像衍生心肌放射组学检测严重主动脉瓣狭窄患者甲状腺素淀粉样变性。","authors":"Alexios S Antonopoulos, Ioannis Panagiotopoulos, Konstantinos Karampinos, Konstantinos Spargias, Charalampos Papastamos, Theodoros Tsampras, Nikolaos Axypolitos, Spyridon Simantiris, Georgios Benetos, Nikolaos Ktenopoulos, Panagiotis Kanatas, Maria Koutelou, Konstantinos Toutouzas, Marios Ioannides, Christos Eftychiou, Christos Mourmouris, Thomas Vrachliotis, Charalambos Antoniades, Konstantinos Tsioufis, Charalambos Vlachopoulos","doi":"10.1080/13506129.2025.2486072","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We explored the value of myocardial radiomics by computed tomography angiography (CTA) for detection of transthyretin amyloidosis cardiomyopathy (ATTR-CM).</p><p><strong>Methods: </strong>The study included 589 patients with aortic stenosis and CTA datasets. Radiomics were extracted from LV myocardium. Arm 1 (<i>n</i> = 400) served for method optimisation and removal of redundant features. In Arm 2 (<i>n</i> = 30), we identified radiomics associated with extracellular volume by CT (ECV<sub>CT</sub>); in Arm 3 (<i>n</i> = 159), radiomics were compared in patients with/without positive bone scintigraphy scan (training cohort, <i>n</i> = 84; validation cohort, <i>n</i> = 75) to build a radiomic signature for ATTR-CM.</p><p><strong>Results: </strong>In Arm 1, unsupervised clustering of patients based on radiomics was associated with significant differences in patients' clinical profile among clusters. In Arm 2, we constructed a radiomic-based ECV (correlation with ECV<sub>CT</sub>: rho = .78, <i>p</i> = 1.2 x 10<sup>-6</sup>) with excellent diagnostic accuracy for high ECV<sub>CT</sub> (AUC = .925, 95%CI: .825-1.000, <i>p</i> = .0002). In Arm 3, a radiomic score (AmyloidRS) had good performance for ATTR-CM detection in the training (c-index .88, 95%CI: .80-.95) and validation cohort (c-index .84, 95%CI: .69-.98). When combined with clinical features, AmyloidRS maximised diagnostic accuracy for ATTR (kappa: .894, balanced accuracy .984).</p><p><strong>Conclusions: </strong>We present a radiomic method for myocardial tissue characterisation in patients with severe aortic stenosis which enables ATTR-CM detection from standard CTA scans.</p>","PeriodicalId":50964,"journal":{"name":"Amyloid-Journal of Protein Folding Disorders","volume":" ","pages":"1-12"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computed tomography-derived myocardial radiomics for detection of transthyretin amyloidosis in patients with severe aortic stenosis.\",\"authors\":\"Alexios S Antonopoulos, Ioannis Panagiotopoulos, Konstantinos Karampinos, Konstantinos Spargias, Charalampos Papastamos, Theodoros Tsampras, Nikolaos Axypolitos, Spyridon Simantiris, Georgios Benetos, Nikolaos Ktenopoulos, Panagiotis Kanatas, Maria Koutelou, Konstantinos Toutouzas, Marios Ioannides, Christos Eftychiou, Christos Mourmouris, Thomas Vrachliotis, Charalambos Antoniades, Konstantinos Tsioufis, Charalambos Vlachopoulos\",\"doi\":\"10.1080/13506129.2025.2486072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>We explored the value of myocardial radiomics by computed tomography angiography (CTA) for detection of transthyretin amyloidosis cardiomyopathy (ATTR-CM).</p><p><strong>Methods: </strong>The study included 589 patients with aortic stenosis and CTA datasets. Radiomics were extracted from LV myocardium. Arm 1 (<i>n</i> = 400) served for method optimisation and removal of redundant features. In Arm 2 (<i>n</i> = 30), we identified radiomics associated with extracellular volume by CT (ECV<sub>CT</sub>); in Arm 3 (<i>n</i> = 159), radiomics were compared in patients with/without positive bone scintigraphy scan (training cohort, <i>n</i> = 84; validation cohort, <i>n</i> = 75) to build a radiomic signature for ATTR-CM.</p><p><strong>Results: </strong>In Arm 1, unsupervised clustering of patients based on radiomics was associated with significant differences in patients' clinical profile among clusters. In Arm 2, we constructed a radiomic-based ECV (correlation with ECV<sub>CT</sub>: rho = .78, <i>p</i> = 1.2 x 10<sup>-6</sup>) with excellent diagnostic accuracy for high ECV<sub>CT</sub> (AUC = .925, 95%CI: .825-1.000, <i>p</i> = .0002). In Arm 3, a radiomic score (AmyloidRS) had good performance for ATTR-CM detection in the training (c-index .88, 95%CI: .80-.95) and validation cohort (c-index .84, 95%CI: .69-.98). When combined with clinical features, AmyloidRS maximised diagnostic accuracy for ATTR (kappa: .894, balanced accuracy .984).</p><p><strong>Conclusions: </strong>We present a radiomic method for myocardial tissue characterisation in patients with severe aortic stenosis which enables ATTR-CM detection from standard CTA scans.</p>\",\"PeriodicalId\":50964,\"journal\":{\"name\":\"Amyloid-Journal of Protein Folding Disorders\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Amyloid-Journal of Protein Folding Disorders\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/13506129.2025.2486072\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Amyloid-Journal of Protein Folding Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13506129.2025.2486072","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:探讨计算机断层血管造影(CTA)心肌放射组学对甲状腺素转淀粉样变性心肌病(atr - cm)的检测价值。方法:研究纳入589例主动脉瓣狭窄患者和CTA数据集。提取左室心肌放射组学。第1组(n = 400)用于方法优化和去除冗余特征。在第2组(n = 30)中,我们通过CT (ECVCT)确定了与细胞外体积相关的放射组学;在第3组(n = 159)中,比较了骨显像扫描阳性/阴性患者的放射组学(训练队列,n = 84;验证队列,n = 75)建立atr - cm的放射学特征。结果:在第1组中,基于放射组学的无监督患者聚类与聚类之间患者临床概况的显着差异相关。在第二组中,我们构建了基于放射组学的ECV(与ECVCT的相关性:rho =)。78, p = 1.2 x 10-6),对高ECVCT (AUC =。925, 95%CI: 0.825 ~ 1.000, p = 0.0002)。在第3组中,放射组评分(AmyloidRS)在训练组(c-index 0.88, 95%CI: 0.80 - 0.95)和验证组(c-index 0.84, 95%CI: 0.69 - 0.98)中具有良好的atr - cm检测效果。当与临床特征相结合时,AmyloidRS对ATTR的诊断准确率最高(kappa: 0.894,平衡准确率为0.984)。结论:我们提出了一种用于严重主动脉瓣狭窄患者心肌组织特征的放射学方法,该方法可以从标准CTA扫描中检测到atr - cm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computed tomography-derived myocardial radiomics for detection of transthyretin amyloidosis in patients with severe aortic stenosis.

Background: We explored the value of myocardial radiomics by computed tomography angiography (CTA) for detection of transthyretin amyloidosis cardiomyopathy (ATTR-CM).

Methods: The study included 589 patients with aortic stenosis and CTA datasets. Radiomics were extracted from LV myocardium. Arm 1 (n = 400) served for method optimisation and removal of redundant features. In Arm 2 (n = 30), we identified radiomics associated with extracellular volume by CT (ECVCT); in Arm 3 (n = 159), radiomics were compared in patients with/without positive bone scintigraphy scan (training cohort, n = 84; validation cohort, n = 75) to build a radiomic signature for ATTR-CM.

Results: In Arm 1, unsupervised clustering of patients based on radiomics was associated with significant differences in patients' clinical profile among clusters. In Arm 2, we constructed a radiomic-based ECV (correlation with ECVCT: rho = .78, p = 1.2 x 10-6) with excellent diagnostic accuracy for high ECVCT (AUC = .925, 95%CI: .825-1.000, p = .0002). In Arm 3, a radiomic score (AmyloidRS) had good performance for ATTR-CM detection in the training (c-index .88, 95%CI: .80-.95) and validation cohort (c-index .84, 95%CI: .69-.98). When combined with clinical features, AmyloidRS maximised diagnostic accuracy for ATTR (kappa: .894, balanced accuracy .984).

Conclusions: We present a radiomic method for myocardial tissue characterisation in patients with severe aortic stenosis which enables ATTR-CM detection from standard CTA scans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Amyloid-Journal of Protein Folding Disorders
Amyloid-Journal of Protein Folding Disorders 生物-生化与分子生物学
CiteScore
10.60
自引率
10.90%
发文量
48
审稿时长
6-12 weeks
期刊介绍: Amyloid: the Journal of Protein Folding Disorders is dedicated to the study of all aspects of the protein groups and associated disorders that are classified as the amyloidoses as well as other disorders associated with abnormal protein folding. The journals major focus points are: etiology, pathogenesis, histopathology, chemical structure, nature of fibrillogenesis; whilst also publishing papers on the basic and chemical genetic aspects of many of these disorders. Amyloid is recognised as one of the leading publications on amyloid protein classifications and the associated disorders, as well as clinical studies on all aspects of amyloid related neurodegenerative diseases and major clinical studies on inherited amyloidosis, especially those related to transthyretin. The Journal also publishes book reviews, meeting reports, editorials, thesis abstracts, review articles and symposia in the various areas listed above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信