Yang Song, Ji Chen, Yaqin Zhang, Ning Wu, Yongjun Zhu, Gang Chen, Feng Miao, Zhiming Chen, Yiqing Wang
{"title":"肿瘤特异性CXCR6阳性前体CD8+ T细胞介导转移性黑色素瘤的肿瘤控制。","authors":"Yang Song, Ji Chen, Yaqin Zhang, Ning Wu, Yongjun Zhu, Gang Chen, Feng Miao, Zhiming Chen, Yiqing Wang","doi":"10.1007/s13402-025-01040-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Adoptive cell therapy (ACT) mediates durable and complete regression of various cancers. However, its efficacy is limited by the long-term persistence of cytotoxic T lymphocytes, given their irreversible dysfunction within the tumor microenvironment. Herein, we aimed to establish an artificial lung metastasis model to examine T-lymphocyte subsets, in order to identify potential effective cell subsets for ACT.</p><p><strong>Methods: </strong>A metastatic lung melanoma mouse model was established using OVA-expressing melanoma B16 cells. Flow cytometry analysis was conducted to examine the surface markers, transcription factors, and secreted cytokines of tumor-specific CD8<sup>+</sup> T cells within metastatic tissues. The infiltrated cells were sorted by flow cytometry for in vitro tumor cell killing assays or in vivo cell infusion therapy combined with chemotherapeutic drugs and immune checkpoint blockade antibodies.</p><p><strong>Results: </strong>Exhausted CD8<sup>+</sup> T cells (Tex) exhibited high heterogeneity in metastatic tissues. Among Tex cells, the CXCR6<sup>-</sup> precursor cell showed certain memory characteristics, including phenotype, transcription factors, and maintenance, whereas the CXCR6<sup>+</sup> subpopulation partially lost these traits. Moreover, CXCR6<sup>+</sup> precursor cells effectively replenished effector-like Tex cells in metastatic tissues and exerted direct cytotoxicity against tumor cells. Notably, transferring these tumor-specific CXCR6<sup>+</sup> precursor-exhausted T (Texp) cells into recipients induced a substantial regression of metastasis. In addition, these cells could respond to immune checkpoint blockade, which could better control tumor metastasis.</p><p><strong>Conclusions: </strong>In our study, a subset of antigen-specific CXCR6-expressing Texp cells was observed within the metastatic tissue. The cells served as a crucial source of effector-like Tex cells and exerted direct cytotoxic effects on tumor cells. Adoptive transfer of CXCR6<sup>+</sup> Texp cells effectively mitigated lung metastasis in mice. This study helps elucidate the role of Texp cells in metastasis, thereby offering novel insights into enhancing the efficacy and durability of immunotherapy.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"693-708"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119687/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tumor-specific CXCR6 positive precursor CD8<sup>+</sup> T cells mediate tumor control in metastatic melanoma.\",\"authors\":\"Yang Song, Ji Chen, Yaqin Zhang, Ning Wu, Yongjun Zhu, Gang Chen, Feng Miao, Zhiming Chen, Yiqing Wang\",\"doi\":\"10.1007/s13402-025-01040-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Adoptive cell therapy (ACT) mediates durable and complete regression of various cancers. However, its efficacy is limited by the long-term persistence of cytotoxic T lymphocytes, given their irreversible dysfunction within the tumor microenvironment. Herein, we aimed to establish an artificial lung metastasis model to examine T-lymphocyte subsets, in order to identify potential effective cell subsets for ACT.</p><p><strong>Methods: </strong>A metastatic lung melanoma mouse model was established using OVA-expressing melanoma B16 cells. Flow cytometry analysis was conducted to examine the surface markers, transcription factors, and secreted cytokines of tumor-specific CD8<sup>+</sup> T cells within metastatic tissues. The infiltrated cells were sorted by flow cytometry for in vitro tumor cell killing assays or in vivo cell infusion therapy combined with chemotherapeutic drugs and immune checkpoint blockade antibodies.</p><p><strong>Results: </strong>Exhausted CD8<sup>+</sup> T cells (Tex) exhibited high heterogeneity in metastatic tissues. Among Tex cells, the CXCR6<sup>-</sup> precursor cell showed certain memory characteristics, including phenotype, transcription factors, and maintenance, whereas the CXCR6<sup>+</sup> subpopulation partially lost these traits. Moreover, CXCR6<sup>+</sup> precursor cells effectively replenished effector-like Tex cells in metastatic tissues and exerted direct cytotoxicity against tumor cells. Notably, transferring these tumor-specific CXCR6<sup>+</sup> precursor-exhausted T (Texp) cells into recipients induced a substantial regression of metastasis. In addition, these cells could respond to immune checkpoint blockade, which could better control tumor metastasis.</p><p><strong>Conclusions: </strong>In our study, a subset of antigen-specific CXCR6-expressing Texp cells was observed within the metastatic tissue. The cells served as a crucial source of effector-like Tex cells and exerted direct cytotoxic effects on tumor cells. Adoptive transfer of CXCR6<sup>+</sup> Texp cells effectively mitigated lung metastasis in mice. This study helps elucidate the role of Texp cells in metastasis, thereby offering novel insights into enhancing the efficacy and durability of immunotherapy.</p>\",\"PeriodicalId\":49223,\"journal\":{\"name\":\"Cellular Oncology\",\"volume\":\" \",\"pages\":\"693-708\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119687/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13402-025-01040-1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-025-01040-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
背景:采用细胞疗法(ACT)可使各种癌症得到持久、彻底的治疗。然而,由于细胞毒性 T 淋巴细胞在肿瘤微环境中不可逆转的功能障碍,其疗效受限于细胞毒性 T 淋巴细胞的长期存在。在此,我们旨在建立一个人工肺转移模型来研究T淋巴细胞亚群,以确定ACT潜在的有效细胞亚群:方法:使用表达 OVA 的黑色素瘤 B16 细胞建立转移性肺黑色素瘤小鼠模型。流式细胞术分析检测了转移组织中肿瘤特异性 CD8+ T 细胞的表面标志物、转录因子和分泌的细胞因子。通过流式细胞术对浸润细胞进行分拣,用于体外肿瘤细胞杀伤试验或体内细胞输注疗法,并结合化疗药物和免疫检查点阻断抗体:结果:在转移组织中,衰竭的 CD8+ T 细胞(Tex)表现出高度异质性。在Tex细胞中,CXCR6-前体细胞表现出一定的记忆特征,包括表型、转录因子和维持能力,而CXCR6+亚群则部分丧失了这些特征。此外,CXCR6+前体细胞能有效补充转移组织中的效应样Tex细胞,并对肿瘤细胞产生直接的细胞毒性。值得注意的是,将这些肿瘤特异性 CXCR6+ 前体细胞排泄的 T(Texp)细胞转移到受者体内可诱导转移灶的大幅消退。此外,这些细胞还能对免疫检查点阻断产生反应,从而更好地控制肿瘤转移:在我们的研究中,在转移组织中观察到了表达抗原特异性 CXCR6 的 Texp 细胞亚群。这些细胞是效应样 Tex 细胞的重要来源,对肿瘤细胞具有直接的细胞毒性作用。CXCR6+Texp细胞的采纳性转移能有效减轻小鼠的肺转移。这项研究有助于阐明 Texp 细胞在转移中的作用,从而为提高免疫疗法的疗效和持久性提供新的见解。
Tumor-specific CXCR6 positive precursor CD8+ T cells mediate tumor control in metastatic melanoma.
Background: Adoptive cell therapy (ACT) mediates durable and complete regression of various cancers. However, its efficacy is limited by the long-term persistence of cytotoxic T lymphocytes, given their irreversible dysfunction within the tumor microenvironment. Herein, we aimed to establish an artificial lung metastasis model to examine T-lymphocyte subsets, in order to identify potential effective cell subsets for ACT.
Methods: A metastatic lung melanoma mouse model was established using OVA-expressing melanoma B16 cells. Flow cytometry analysis was conducted to examine the surface markers, transcription factors, and secreted cytokines of tumor-specific CD8+ T cells within metastatic tissues. The infiltrated cells were sorted by flow cytometry for in vitro tumor cell killing assays or in vivo cell infusion therapy combined with chemotherapeutic drugs and immune checkpoint blockade antibodies.
Results: Exhausted CD8+ T cells (Tex) exhibited high heterogeneity in metastatic tissues. Among Tex cells, the CXCR6- precursor cell showed certain memory characteristics, including phenotype, transcription factors, and maintenance, whereas the CXCR6+ subpopulation partially lost these traits. Moreover, CXCR6+ precursor cells effectively replenished effector-like Tex cells in metastatic tissues and exerted direct cytotoxicity against tumor cells. Notably, transferring these tumor-specific CXCR6+ precursor-exhausted T (Texp) cells into recipients induced a substantial regression of metastasis. In addition, these cells could respond to immune checkpoint blockade, which could better control tumor metastasis.
Conclusions: In our study, a subset of antigen-specific CXCR6-expressing Texp cells was observed within the metastatic tissue. The cells served as a crucial source of effector-like Tex cells and exerted direct cytotoxic effects on tumor cells. Adoptive transfer of CXCR6+ Texp cells effectively mitigated lung metastasis in mice. This study helps elucidate the role of Texp cells in metastasis, thereby offering novel insights into enhancing the efficacy and durability of immunotherapy.
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.