{"title":"从改性泥炭藓中提取可持续的疏水生物基吸附剂,用于高效油水分离。","authors":"Junpeng Ren, Xiuheng Yang, Yu Wang, Shijiang Zhang, Jinkang Zhou","doi":"10.1038/s41598-025-96059-7","DOIUrl":null,"url":null,"abstract":"<p><p>Oil spills pose a major environmental challenge, highlighting the urgent need for effective materials capable of achieving efficient oil-water separation to mitigate their detrimental impacts. While various bio-based and synthetic adsorbents have been explored for this purpose, existing materials often suffer from low adsorption capacity, poor reusability, limited hydrophobicity, or environmental concerns. In particular, natural bio-based materials frequently exhibit inherent hydrophilicity, limiting their effectiveness in selective oil adsorption. To address this gap, we developed a novel bio-based oil adsorbent derived from sphagnum moss, modified via sequential pretreatment with hydrogen peroxide and sodium hydroxide, followed by chemical functionalization with silane. This modification enhanced hydrophobicity and structural stability, overcoming the limitations of unmodified bio-based adsorbents. Characterization using SEM, XPS, FTIR, and TGA confirmed the successful grafting of hydrophobic functional groups and the formation of a uniformly rough surface, leading to a water contact angle of 157°. Comparative analysis demonstrated that the modified sphagnum moss exhibited a significantly enhanced adsorption capacity of 22.756 g/g for motor oil, outperforming conventional bio-based adsorbents, including currently prevalent biological adsorbents (1.69-12.8 g/g) and biochar (8.1-18.2 g/g). Furthermore, the adsorption kinetics conformed to a pseudo-second-order model, indicating chemisorption as the dominant mechanism. This suggests strong interactions between oil molecules and the functionalized surface, contributing to enhanced efficiency and selectivity. These findings highlight the novelty, superior performance, and environmental compatibility of modified sphagnum moss as an effective and sustainable solution for oil spill remediation. Its high adsorption capacity, selective oil affinity, and reusability make it a promising alternative to existing bio-based adsorbents, providing an eco-friendly approach to oil spill management and environmental restoration.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11792"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973172/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sustainable hydrophobic bio-based adsorbent from modified sphagnum moss for efficient oil-water separation.\",\"authors\":\"Junpeng Ren, Xiuheng Yang, Yu Wang, Shijiang Zhang, Jinkang Zhou\",\"doi\":\"10.1038/s41598-025-96059-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oil spills pose a major environmental challenge, highlighting the urgent need for effective materials capable of achieving efficient oil-water separation to mitigate their detrimental impacts. While various bio-based and synthetic adsorbents have been explored for this purpose, existing materials often suffer from low adsorption capacity, poor reusability, limited hydrophobicity, or environmental concerns. In particular, natural bio-based materials frequently exhibit inherent hydrophilicity, limiting their effectiveness in selective oil adsorption. To address this gap, we developed a novel bio-based oil adsorbent derived from sphagnum moss, modified via sequential pretreatment with hydrogen peroxide and sodium hydroxide, followed by chemical functionalization with silane. This modification enhanced hydrophobicity and structural stability, overcoming the limitations of unmodified bio-based adsorbents. Characterization using SEM, XPS, FTIR, and TGA confirmed the successful grafting of hydrophobic functional groups and the formation of a uniformly rough surface, leading to a water contact angle of 157°. Comparative analysis demonstrated that the modified sphagnum moss exhibited a significantly enhanced adsorption capacity of 22.756 g/g for motor oil, outperforming conventional bio-based adsorbents, including currently prevalent biological adsorbents (1.69-12.8 g/g) and biochar (8.1-18.2 g/g). Furthermore, the adsorption kinetics conformed to a pseudo-second-order model, indicating chemisorption as the dominant mechanism. This suggests strong interactions between oil molecules and the functionalized surface, contributing to enhanced efficiency and selectivity. These findings highlight the novelty, superior performance, and environmental compatibility of modified sphagnum moss as an effective and sustainable solution for oil spill remediation. Its high adsorption capacity, selective oil affinity, and reusability make it a promising alternative to existing bio-based adsorbents, providing an eco-friendly approach to oil spill management and environmental restoration.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"11792\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973172/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-96059-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-96059-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Sustainable hydrophobic bio-based adsorbent from modified sphagnum moss for efficient oil-water separation.
Oil spills pose a major environmental challenge, highlighting the urgent need for effective materials capable of achieving efficient oil-water separation to mitigate their detrimental impacts. While various bio-based and synthetic adsorbents have been explored for this purpose, existing materials often suffer from low adsorption capacity, poor reusability, limited hydrophobicity, or environmental concerns. In particular, natural bio-based materials frequently exhibit inherent hydrophilicity, limiting their effectiveness in selective oil adsorption. To address this gap, we developed a novel bio-based oil adsorbent derived from sphagnum moss, modified via sequential pretreatment with hydrogen peroxide and sodium hydroxide, followed by chemical functionalization with silane. This modification enhanced hydrophobicity and structural stability, overcoming the limitations of unmodified bio-based adsorbents. Characterization using SEM, XPS, FTIR, and TGA confirmed the successful grafting of hydrophobic functional groups and the formation of a uniformly rough surface, leading to a water contact angle of 157°. Comparative analysis demonstrated that the modified sphagnum moss exhibited a significantly enhanced adsorption capacity of 22.756 g/g for motor oil, outperforming conventional bio-based adsorbents, including currently prevalent biological adsorbents (1.69-12.8 g/g) and biochar (8.1-18.2 g/g). Furthermore, the adsorption kinetics conformed to a pseudo-second-order model, indicating chemisorption as the dominant mechanism. This suggests strong interactions between oil molecules and the functionalized surface, contributing to enhanced efficiency and selectivity. These findings highlight the novelty, superior performance, and environmental compatibility of modified sphagnum moss as an effective and sustainable solution for oil spill remediation. Its high adsorption capacity, selective oil affinity, and reusability make it a promising alternative to existing bio-based adsorbents, providing an eco-friendly approach to oil spill management and environmental restoration.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.