Vanessa Cordeiro Silva , Gabrielle Moreira Matos , Iara Gonçalves de Aquino , Elizabeth Ferreira Martinez , Larissa Moreira Spinola de Castro-Raucci , Andresa Borges Soares , Vera Cavalcanti de Araújo , Lucas Novaes Teixeira
{"title":"牙釉质基质蛋白结合胶原膜对成骨细胞培养的影响。","authors":"Vanessa Cordeiro Silva , Gabrielle Moreira Matos , Iara Gonçalves de Aquino , Elizabeth Ferreira Martinez , Larissa Moreira Spinola de Castro-Raucci , Andresa Borges Soares , Vera Cavalcanti de Araújo , Lucas Novaes Teixeira","doi":"10.1016/j.job.2025.100659","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Biodegradable collagen membranes are widely used in guided bone regeneration. This study evaluated the effect of enamel matrix proteins (Emdogain®) combined with two collagen membranes (Bio-Gide® or Collprotect®) on osteoblastic cell cultures.</div></div><div><h3>Methods</h3><div>Human osteoblastic cells were cultured on Bio-Gide® or Collprotect® membranes coated with Emdogain® or left uncoated. The assessed parameters included amelogenin quantification at 1 h, 12 h, 1 day, 3 days, and 7 days; cell morphology at 1 day; cell proliferation at 1, 2, and 3 days; gene expression of <em>COL1A1</em>, <em>IBSP</em>, <em>SPP1</em>, and <em>BGLAP</em> at 1 day; Collagen type I quantification at 3 and 7 days; alkaline phosphatase (ALP) activity at 3 and 7 days; and mineralization at 14 days. Data were analyzed using two-way analysis of variance or the Kruskal-Wallis test.</div></div><div><h3>Results</h3><div>Higher amelogenin levels were detected in Bio-Gide® cultures than in Collprotect® cultures after 3 and 7 days. Cells adhered and spread in all experimental groups. Cell proliferation was higher in Bio-Gide® cultures after 3 days (p < 0.05). Gene expression of <em>COL1A1</em>, <em>IBSP</em>, and <em>SPP1</em> was greater in Bio-Gide® cultures with Emdogain® after 1 day. There was higher collagen type I secretion by cultures grown on collagen membranes coated with Emdogain®, particularly on Bio-Gide® cultures at 7 days. ALP activity was also higher in Bio-Gide® cultures at 7 days (p < 0.05). Greater mineralization was detected in cultures grown on Bio-Gide® with Emdogain® (p < 0.05).</div></div><div><h3>Conclusion</h3><div>Combining collagen membranes, particularly Bio-Gide®, with enamel matrix proteins promotes osteogenesis in vitro, potentially advancing bone tissue regeneration and preservation methods.</div></div>","PeriodicalId":45851,"journal":{"name":"Journal of Oral Biosciences","volume":"67 2","pages":"Article 100659"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of enamel matrix proteins combined with collagen membranes on osteoblastic cell cultures\",\"authors\":\"Vanessa Cordeiro Silva , Gabrielle Moreira Matos , Iara Gonçalves de Aquino , Elizabeth Ferreira Martinez , Larissa Moreira Spinola de Castro-Raucci , Andresa Borges Soares , Vera Cavalcanti de Araújo , Lucas Novaes Teixeira\",\"doi\":\"10.1016/j.job.2025.100659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>Biodegradable collagen membranes are widely used in guided bone regeneration. This study evaluated the effect of enamel matrix proteins (Emdogain®) combined with two collagen membranes (Bio-Gide® or Collprotect®) on osteoblastic cell cultures.</div></div><div><h3>Methods</h3><div>Human osteoblastic cells were cultured on Bio-Gide® or Collprotect® membranes coated with Emdogain® or left uncoated. The assessed parameters included amelogenin quantification at 1 h, 12 h, 1 day, 3 days, and 7 days; cell morphology at 1 day; cell proliferation at 1, 2, and 3 days; gene expression of <em>COL1A1</em>, <em>IBSP</em>, <em>SPP1</em>, and <em>BGLAP</em> at 1 day; Collagen type I quantification at 3 and 7 days; alkaline phosphatase (ALP) activity at 3 and 7 days; and mineralization at 14 days. Data were analyzed using two-way analysis of variance or the Kruskal-Wallis test.</div></div><div><h3>Results</h3><div>Higher amelogenin levels were detected in Bio-Gide® cultures than in Collprotect® cultures after 3 and 7 days. Cells adhered and spread in all experimental groups. Cell proliferation was higher in Bio-Gide® cultures after 3 days (p < 0.05). Gene expression of <em>COL1A1</em>, <em>IBSP</em>, and <em>SPP1</em> was greater in Bio-Gide® cultures with Emdogain® after 1 day. There was higher collagen type I secretion by cultures grown on collagen membranes coated with Emdogain®, particularly on Bio-Gide® cultures at 7 days. ALP activity was also higher in Bio-Gide® cultures at 7 days (p < 0.05). Greater mineralization was detected in cultures grown on Bio-Gide® with Emdogain® (p < 0.05).</div></div><div><h3>Conclusion</h3><div>Combining collagen membranes, particularly Bio-Gide®, with enamel matrix proteins promotes osteogenesis in vitro, potentially advancing bone tissue regeneration and preservation methods.</div></div>\",\"PeriodicalId\":45851,\"journal\":{\"name\":\"Journal of Oral Biosciences\",\"volume\":\"67 2\",\"pages\":\"Article 100659\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Oral Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1349007925000489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1349007925000489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Impact of enamel matrix proteins combined with collagen membranes on osteoblastic cell cultures
Objective
Biodegradable collagen membranes are widely used in guided bone regeneration. This study evaluated the effect of enamel matrix proteins (Emdogain®) combined with two collagen membranes (Bio-Gide® or Collprotect®) on osteoblastic cell cultures.
Methods
Human osteoblastic cells were cultured on Bio-Gide® or Collprotect® membranes coated with Emdogain® or left uncoated. The assessed parameters included amelogenin quantification at 1 h, 12 h, 1 day, 3 days, and 7 days; cell morphology at 1 day; cell proliferation at 1, 2, and 3 days; gene expression of COL1A1, IBSP, SPP1, and BGLAP at 1 day; Collagen type I quantification at 3 and 7 days; alkaline phosphatase (ALP) activity at 3 and 7 days; and mineralization at 14 days. Data were analyzed using two-way analysis of variance or the Kruskal-Wallis test.
Results
Higher amelogenin levels were detected in Bio-Gide® cultures than in Collprotect® cultures after 3 and 7 days. Cells adhered and spread in all experimental groups. Cell proliferation was higher in Bio-Gide® cultures after 3 days (p < 0.05). Gene expression of COL1A1, IBSP, and SPP1 was greater in Bio-Gide® cultures with Emdogain® after 1 day. There was higher collagen type I secretion by cultures grown on collagen membranes coated with Emdogain®, particularly on Bio-Gide® cultures at 7 days. ALP activity was also higher in Bio-Gide® cultures at 7 days (p < 0.05). Greater mineralization was detected in cultures grown on Bio-Gide® with Emdogain® (p < 0.05).
Conclusion
Combining collagen membranes, particularly Bio-Gide®, with enamel matrix proteins promotes osteogenesis in vitro, potentially advancing bone tissue regeneration and preservation methods.