Zaikuan Zhang , Runzhi Wang , Jin Cai , Xinyi Li , Xiaosong Feng , Shengming Xu , Zhihong Jiang , Peiyi Lin , Zengyi Huang , Yajun Xie
{"title":"黄芩苷通过诱导代谢重编程和靶向腺苷 A1 受体缓解脂肪细胞中的脂质积累。","authors":"Zaikuan Zhang , Runzhi Wang , Jin Cai , Xinyi Li , Xiaosong Feng , Shengming Xu , Zhihong Jiang , Peiyi Lin , Zengyi Huang , Yajun Xie","doi":"10.1016/j.toxicon.2025.108339","DOIUrl":null,"url":null,"abstract":"<div><div>Excessive lipid accumulation can lead to obesity, metabolic-associated fatty liver disease, and type 2 diabetes. However, there are currently few drugs that could effectively and safely inhibit the accumulation of intracellular lipids. In this study, we observed that baicalin significantly altered cellular respiration by reducing mitochondrial oxygen consumption while enhancing glycolytic flux, accompanied by increased phosphorylation of AMPK and ACC, suggesting an adaptation to altered energy availability. Baicalin effectively reduced lipid droplet formation and intracellular triglyceride levels in adipocytes, as marked by downregulating genes and proteins associated with lipid storage, including <em>Cd36</em>, <em>Fabp4</em>, and FASN. Transcriptomic analysis identified 2150 differentially expressed genes in baicalin-treated adipocytes, with significant enrichment in metabolic pathways such as glycolysis, gluconeogenesis, and lipid metabolism. Further analysis revealed that baicalin upregulated glycolytic and fatty acid β-oxidation (FAO) pathways while downregulating pyruvate dehydrogenase, inducing a shift toward glycolysis and FAO for energy production. Molecular docking analysis revealed that Adenosine A1 receptor (ADORA1) was the target of baicalin, which inhibited the maturation of sterol regulatory element binding protein 1 (SREBP1) and finally alleviated lipid deposition. These results demonstrate that baicalin induces metabolic reprogramming of adipocytes by inhibiting glucose aerobic metabolism while enhancing anaerobic glycolysis and FAO. Meanwhile, baicalin targets ADORA1, which subsequently influences the processing of SREBP1 and downregulates lipid biosynthesis, positioning baicalin as a potential therapeutic agent against obesity and related metabolic disorders.</div></div>","PeriodicalId":23289,"journal":{"name":"Toxicon","volume":"258 ","pages":"Article 108339"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Baicalin alleviates lipid accumulation in adipocytes via inducing metabolic reprogramming and targeting Adenosine A1 receptor\",\"authors\":\"Zaikuan Zhang , Runzhi Wang , Jin Cai , Xinyi Li , Xiaosong Feng , Shengming Xu , Zhihong Jiang , Peiyi Lin , Zengyi Huang , Yajun Xie\",\"doi\":\"10.1016/j.toxicon.2025.108339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Excessive lipid accumulation can lead to obesity, metabolic-associated fatty liver disease, and type 2 diabetes. However, there are currently few drugs that could effectively and safely inhibit the accumulation of intracellular lipids. In this study, we observed that baicalin significantly altered cellular respiration by reducing mitochondrial oxygen consumption while enhancing glycolytic flux, accompanied by increased phosphorylation of AMPK and ACC, suggesting an adaptation to altered energy availability. Baicalin effectively reduced lipid droplet formation and intracellular triglyceride levels in adipocytes, as marked by downregulating genes and proteins associated with lipid storage, including <em>Cd36</em>, <em>Fabp4</em>, and FASN. Transcriptomic analysis identified 2150 differentially expressed genes in baicalin-treated adipocytes, with significant enrichment in metabolic pathways such as glycolysis, gluconeogenesis, and lipid metabolism. Further analysis revealed that baicalin upregulated glycolytic and fatty acid β-oxidation (FAO) pathways while downregulating pyruvate dehydrogenase, inducing a shift toward glycolysis and FAO for energy production. Molecular docking analysis revealed that Adenosine A1 receptor (ADORA1) was the target of baicalin, which inhibited the maturation of sterol regulatory element binding protein 1 (SREBP1) and finally alleviated lipid deposition. These results demonstrate that baicalin induces metabolic reprogramming of adipocytes by inhibiting glucose aerobic metabolism while enhancing anaerobic glycolysis and FAO. Meanwhile, baicalin targets ADORA1, which subsequently influences the processing of SREBP1 and downregulates lipid biosynthesis, positioning baicalin as a potential therapeutic agent against obesity and related metabolic disorders.</div></div>\",\"PeriodicalId\":23289,\"journal\":{\"name\":\"Toxicon\",\"volume\":\"258 \",\"pages\":\"Article 108339\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicon\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041010125001138\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicon","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041010125001138","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Baicalin alleviates lipid accumulation in adipocytes via inducing metabolic reprogramming and targeting Adenosine A1 receptor
Excessive lipid accumulation can lead to obesity, metabolic-associated fatty liver disease, and type 2 diabetes. However, there are currently few drugs that could effectively and safely inhibit the accumulation of intracellular lipids. In this study, we observed that baicalin significantly altered cellular respiration by reducing mitochondrial oxygen consumption while enhancing glycolytic flux, accompanied by increased phosphorylation of AMPK and ACC, suggesting an adaptation to altered energy availability. Baicalin effectively reduced lipid droplet formation and intracellular triglyceride levels in adipocytes, as marked by downregulating genes and proteins associated with lipid storage, including Cd36, Fabp4, and FASN. Transcriptomic analysis identified 2150 differentially expressed genes in baicalin-treated adipocytes, with significant enrichment in metabolic pathways such as glycolysis, gluconeogenesis, and lipid metabolism. Further analysis revealed that baicalin upregulated glycolytic and fatty acid β-oxidation (FAO) pathways while downregulating pyruvate dehydrogenase, inducing a shift toward glycolysis and FAO for energy production. Molecular docking analysis revealed that Adenosine A1 receptor (ADORA1) was the target of baicalin, which inhibited the maturation of sterol regulatory element binding protein 1 (SREBP1) and finally alleviated lipid deposition. These results demonstrate that baicalin induces metabolic reprogramming of adipocytes by inhibiting glucose aerobic metabolism while enhancing anaerobic glycolysis and FAO. Meanwhile, baicalin targets ADORA1, which subsequently influences the processing of SREBP1 and downregulates lipid biosynthesis, positioning baicalin as a potential therapeutic agent against obesity and related metabolic disorders.
期刊介绍:
Toxicon has an open access mirror Toxicon: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. An introductory offer Toxicon: X - full waiver of the Open Access fee.
Toxicon''s "aims and scope" are to publish:
-articles containing the results of original research on problems related to toxins derived from animals, plants and microorganisms
-papers on novel findings related to the chemical, pharmacological, toxicological, and immunological properties of natural toxins
-molecular biological studies of toxins and other genes from poisonous and venomous organisms that advance understanding of the role or function of toxins
-clinical observations on poisoning and envenoming where a new therapeutic principle has been proposed or a decidedly superior clinical result has been obtained.
-material on the use of toxins as tools in studying biological processes and material on subjects related to venom and antivenom problems.
-articles on the translational application of toxins, for example as drugs and insecticides
-epidemiological studies on envenoming or poisoning, so long as they highlight a previously unrecognised medical problem or provide insight into the prevention or medical treatment of envenoming or poisoning. Retrospective surveys of hospital records, especially those lacking species identification, will not be considered for publication. Properly designed prospective community-based surveys are strongly encouraged.
-articles describing well-known activities of venoms, such as antibacterial, anticancer, and analgesic activities of arachnid venoms, without any attempt to define the mechanism of action or purify the active component, will not be considered for publication in Toxicon.
-review articles on problems related to toxinology.
To encourage the exchange of ideas, sections of the journal may be devoted to Short Communications, Letters to the Editor and activities of the affiliated societies.