设计基于位移的粘性阻尼器减震结构。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shuo Dong, Wen Pan, Liaoyuan Ye, Jingwei Wang
{"title":"设计基于位移的粘性阻尼器减震结构。","authors":"Shuo Dong, Wen Pan, Liaoyuan Ye, Jingwei Wang","doi":"10.1038/s41598-025-94016-y","DOIUrl":null,"url":null,"abstract":"<p><p>With the acceleration of modern urbanization, the height and density of buildings are increasing, and the need for seismic protection in structural design is becoming more and more urgent. The robust recovery, great reusability, and exceptional seismic performance of the viscous damper make it a popular choice for high-rise construction. To improve the seismic damping effect of the building structure, the study employs methodologies that the restoration force model simulates the viscous dampers' resistance against the seismic forces, and the time course analysis method allows for analysis of the dynamic response of structures to seismic activities through time in realigning the position of the viscous damper. Furthermore, the study utilizes the multi-objective optimization method to optimize the distribution parameters of the damping structure, thereby enabling the design of a displacement-based vibration-damping structural configuration for the viscous damper. The results revealed that the maximum inter-story displacement angle produced by the studied seismic-damped structural design under five sets of natural seismic waves used for validation is 1/909, which is less than the displacement angle limit value of 1/1000, and meets the requirements of the Chinese code for seismic design of buildings (GB 50011 - 2010). In conclusion, the study of design for viscous dampers using displacements offers positive benefits with an inter-story displacement angle decrease of 41.93%, acceleration decrease of 16.27%, and layer displacement decrease of 6.72%. The conclusion would be useful for decision-making to give estimates of seismic losses during construction.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11742"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973148/pdf/","citationCount":"0","resultStr":"{\"title\":\"Design of displacement-based viscous damper damping structures.\",\"authors\":\"Shuo Dong, Wen Pan, Liaoyuan Ye, Jingwei Wang\",\"doi\":\"10.1038/s41598-025-94016-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the acceleration of modern urbanization, the height and density of buildings are increasing, and the need for seismic protection in structural design is becoming more and more urgent. The robust recovery, great reusability, and exceptional seismic performance of the viscous damper make it a popular choice for high-rise construction. To improve the seismic damping effect of the building structure, the study employs methodologies that the restoration force model simulates the viscous dampers' resistance against the seismic forces, and the time course analysis method allows for analysis of the dynamic response of structures to seismic activities through time in realigning the position of the viscous damper. Furthermore, the study utilizes the multi-objective optimization method to optimize the distribution parameters of the damping structure, thereby enabling the design of a displacement-based vibration-damping structural configuration for the viscous damper. The results revealed that the maximum inter-story displacement angle produced by the studied seismic-damped structural design under five sets of natural seismic waves used for validation is 1/909, which is less than the displacement angle limit value of 1/1000, and meets the requirements of the Chinese code for seismic design of buildings (GB 50011 - 2010). In conclusion, the study of design for viscous dampers using displacements offers positive benefits with an inter-story displacement angle decrease of 41.93%, acceleration decrease of 16.27%, and layer displacement decrease of 6.72%. The conclusion would be useful for decision-making to give estimates of seismic losses during construction.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"11742\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973148/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-94016-y\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-94016-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

随着现代城市化进程的加快,建筑物的高度和密度不断增加,结构设计对抗震防护的需求也越来越迫切。粘性阻尼器的强回弹性、高重复使用性和卓越的抗震性能使其成为高层建筑的热门选择。为了提高建筑结构的抗震减震效果,本研究采用恢复力模型模拟粘滞阻尼器对地震力的抵抗,时间过程分析法在调整粘滞阻尼器位置的过程中,通过时间分析结构对地震活动的动力响应。利用多目标优化方法对阻尼结构的分布参数进行优化,从而设计出基于位移的粘性阻尼器减振结构构型。结果表明:所研究的地震阻尼结构在5组自然地震波作用下产生的最大层间位移角为1/909,小于位移角限值1/1000,满足中国建筑抗震设计规范(GB 50011 - 2010)的要求。综上所述,考虑位移的粘性阻尼器设计研究具有积极的效果,层间位移角减小41.93%,加速度减小16.27%,层间位移减小6.72%。所得结论对工程施工中地震损失的估算具有一定的决策指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design of displacement-based viscous damper damping structures.

Design of displacement-based viscous damper damping structures.

Design of displacement-based viscous damper damping structures.

Design of displacement-based viscous damper damping structures.

With the acceleration of modern urbanization, the height and density of buildings are increasing, and the need for seismic protection in structural design is becoming more and more urgent. The robust recovery, great reusability, and exceptional seismic performance of the viscous damper make it a popular choice for high-rise construction. To improve the seismic damping effect of the building structure, the study employs methodologies that the restoration force model simulates the viscous dampers' resistance against the seismic forces, and the time course analysis method allows for analysis of the dynamic response of structures to seismic activities through time in realigning the position of the viscous damper. Furthermore, the study utilizes the multi-objective optimization method to optimize the distribution parameters of the damping structure, thereby enabling the design of a displacement-based vibration-damping structural configuration for the viscous damper. The results revealed that the maximum inter-story displacement angle produced by the studied seismic-damped structural design under five sets of natural seismic waves used for validation is 1/909, which is less than the displacement angle limit value of 1/1000, and meets the requirements of the Chinese code for seismic design of buildings (GB 50011 - 2010). In conclusion, the study of design for viscous dampers using displacements offers positive benefits with an inter-story displacement angle decrease of 41.93%, acceleration decrease of 16.27%, and layer displacement decrease of 6.72%. The conclusion would be useful for decision-making to give estimates of seismic losses during construction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信