{"title":"财团型锌生物肥料的配方及其质量控制,改善小麦籽粒和Wistar大鼠血浆锌状况。","authors":"Shaibi Saleem, Shams Tabrez Khan","doi":"10.1111/ppl.70206","DOIUrl":null,"url":null,"abstract":"<p><p>Zn-deficiency causes immense losses to agriculture and leads to various human health issues adding to the burden on the global healthcare system. Growing zinc-dense cereals using Zn-biofertilizer is one of the most enticing solutions to the problem. In this study a Zn-biofertilizer containing a consortium of Zn-solubilizing strains of Streptomyces sp., Pseudomonas sp. and Zinc oxide nanoparticles as source of Zn was prepared. Strains showing an excellent Zn-solubilization efficiency (>200%), additional plant-growth-promoting traits, abiotic stress tolerance, and root colonization were selected. Seven experiments, mainly comparing the influence of bulk and nano-ZnO as Zn-sources in combination with the prepared Zn-biofertilizer on wheat plant growth and grain Zn-fortification were performed. When wheat plants were grown in the presence of prepared biofertilizer and nano-ZnO a significant increase in plant vegetative growth and grain yield was observed. A 35.1%, 60.5% and 67.2% increase in total- plant length, fresh and dry-weight respectively, was observed compared to the control. Similarly, wheat grains per spike, grain yield, and grain protein increased by 17.0%, 13.9%, and 47.5%, respectively. The Atomic Absorption Spectroscopy and SEM-EDX of wheat grains grown with biofertilizer and nano-ZnO reveal a high Zn-content (43.0 ± 0.5 mg kg<sup>-1</sup>) in the grains. The AAS analysis of the blood from Wistar rats fed with Zn-dense wheat flour obtained in the study shows a higher Zn-content (7.79 ± 0.18 μg ml<sup>-1</sup>) in the blood than those fed with control flour. This study conclusively proves that the prepared Zn-biofertilizer with ZnO-nanoparticles can improve the Zn-content of wheat, consequently increasing blood Zn-content in rats.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70206"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulation of a consortium-based Zn biofertilizer, and its quality control, to improve Zn status of wheat grains and Wistar rat blood plasma.\",\"authors\":\"Shaibi Saleem, Shams Tabrez Khan\",\"doi\":\"10.1111/ppl.70206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zn-deficiency causes immense losses to agriculture and leads to various human health issues adding to the burden on the global healthcare system. Growing zinc-dense cereals using Zn-biofertilizer is one of the most enticing solutions to the problem. In this study a Zn-biofertilizer containing a consortium of Zn-solubilizing strains of Streptomyces sp., Pseudomonas sp. and Zinc oxide nanoparticles as source of Zn was prepared. Strains showing an excellent Zn-solubilization efficiency (>200%), additional plant-growth-promoting traits, abiotic stress tolerance, and root colonization were selected. Seven experiments, mainly comparing the influence of bulk and nano-ZnO as Zn-sources in combination with the prepared Zn-biofertilizer on wheat plant growth and grain Zn-fortification were performed. When wheat plants were grown in the presence of prepared biofertilizer and nano-ZnO a significant increase in plant vegetative growth and grain yield was observed. A 35.1%, 60.5% and 67.2% increase in total- plant length, fresh and dry-weight respectively, was observed compared to the control. Similarly, wheat grains per spike, grain yield, and grain protein increased by 17.0%, 13.9%, and 47.5%, respectively. The Atomic Absorption Spectroscopy and SEM-EDX of wheat grains grown with biofertilizer and nano-ZnO reveal a high Zn-content (43.0 ± 0.5 mg kg<sup>-1</sup>) in the grains. The AAS analysis of the blood from Wistar rats fed with Zn-dense wheat flour obtained in the study shows a higher Zn-content (7.79 ± 0.18 μg ml<sup>-1</sup>) in the blood than those fed with control flour. This study conclusively proves that the prepared Zn-biofertilizer with ZnO-nanoparticles can improve the Zn-content of wheat, consequently increasing blood Zn-content in rats.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 2\",\"pages\":\"e70206\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70206\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70206","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Formulation of a consortium-based Zn biofertilizer, and its quality control, to improve Zn status of wheat grains and Wistar rat blood plasma.
Zn-deficiency causes immense losses to agriculture and leads to various human health issues adding to the burden on the global healthcare system. Growing zinc-dense cereals using Zn-biofertilizer is one of the most enticing solutions to the problem. In this study a Zn-biofertilizer containing a consortium of Zn-solubilizing strains of Streptomyces sp., Pseudomonas sp. and Zinc oxide nanoparticles as source of Zn was prepared. Strains showing an excellent Zn-solubilization efficiency (>200%), additional plant-growth-promoting traits, abiotic stress tolerance, and root colonization were selected. Seven experiments, mainly comparing the influence of bulk and nano-ZnO as Zn-sources in combination with the prepared Zn-biofertilizer on wheat plant growth and grain Zn-fortification were performed. When wheat plants were grown in the presence of prepared biofertilizer and nano-ZnO a significant increase in plant vegetative growth and grain yield was observed. A 35.1%, 60.5% and 67.2% increase in total- plant length, fresh and dry-weight respectively, was observed compared to the control. Similarly, wheat grains per spike, grain yield, and grain protein increased by 17.0%, 13.9%, and 47.5%, respectively. The Atomic Absorption Spectroscopy and SEM-EDX of wheat grains grown with biofertilizer and nano-ZnO reveal a high Zn-content (43.0 ± 0.5 mg kg-1) in the grains. The AAS analysis of the blood from Wistar rats fed with Zn-dense wheat flour obtained in the study shows a higher Zn-content (7.79 ± 0.18 μg ml-1) in the blood than those fed with control flour. This study conclusively proves that the prepared Zn-biofertilizer with ZnO-nanoparticles can improve the Zn-content of wheat, consequently increasing blood Zn-content in rats.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.