基于原则的熟练预测全球变暖的气候平均状态。

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
National Science Review Pub Date : 2024-11-30 eCollection Date: 2025-02-01 DOI:10.1093/nsr/nwae442
Ming Cai, Xiaoming Hu, Jie Sun, Yongyun Hu, Guosheng Liu, Zhaohua Wu, Feng Ding, Wanying Kang
{"title":"基于原则的熟练预测全球变暖的气候平均状态。","authors":"Ming Cai, Xiaoming Hu, Jie Sun, Yongyun Hu, Guosheng Liu, Zhaohua Wu, Feng Ding, Wanying Kang","doi":"10.1093/nsr/nwae442","DOIUrl":null,"url":null,"abstract":"<p><p>Distinguishing anthropogenic warming from natural variability and reducing uncertainty in global-warming projections continue to present challenges. Here, we introduce a novel principle-based framework for predicting global warming from climate mean states that is based solely on carbon-dioxide-increasing scenarios without running climate models and relying on statistical trend analysis. By applying this framework to the climate mean state of 1980-2000, we accurately capture the subsequent global warming (0.403 K predicted versus 0.414 K observed) and polar warming amplification patterns. Our predictions from climate mean states of individual models not only exhibit a high map-correlation skill that is comparable to that of individual Coupled Model Intercomparison Project Phase 6 models for the observed warming, but also capture the temporal pace of their warming under the 1% annual CO<sub>2</sub>-increasing scenario. This work provides the first principle-based confirmation that anthropogenic greenhouse gases are the primary cause of the observed global warming from 1980-2000 to 2000-2020, independently of climate models and statistical analysis.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 2","pages":"nwae442"},"PeriodicalIF":16.3000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968647/pdf/","citationCount":"0","resultStr":"{\"title\":\"Principle-based adept predictions of global warming from climate mean states.\",\"authors\":\"Ming Cai, Xiaoming Hu, Jie Sun, Yongyun Hu, Guosheng Liu, Zhaohua Wu, Feng Ding, Wanying Kang\",\"doi\":\"10.1093/nsr/nwae442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Distinguishing anthropogenic warming from natural variability and reducing uncertainty in global-warming projections continue to present challenges. Here, we introduce a novel principle-based framework for predicting global warming from climate mean states that is based solely on carbon-dioxide-increasing scenarios without running climate models and relying on statistical trend analysis. By applying this framework to the climate mean state of 1980-2000, we accurately capture the subsequent global warming (0.403 K predicted versus 0.414 K observed) and polar warming amplification patterns. Our predictions from climate mean states of individual models not only exhibit a high map-correlation skill that is comparable to that of individual Coupled Model Intercomparison Project Phase 6 models for the observed warming, but also capture the temporal pace of their warming under the 1% annual CO<sub>2</sub>-increasing scenario. This work provides the first principle-based confirmation that anthropogenic greenhouse gases are the primary cause of the observed global warming from 1980-2000 to 2000-2020, independently of climate models and statistical analysis.</p>\",\"PeriodicalId\":18842,\"journal\":{\"name\":\"National Science Review\",\"volume\":\"12 2\",\"pages\":\"nwae442\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968647/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Science Review\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1093/nsr/nwae442\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae442","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

区分人为变暖与自然变率以及减少全球变暖预估中的不确定性仍然是面临的挑战。在这里,我们介绍了一个新的基于原则的框架,用于从气候平均状态预测全球变暖,该框架仅基于二氧化碳增加情景,而不运行气候模型并依赖于统计趋势分析。通过将该框架应用于1980-2000年的气候平均状态,我们准确地捕获了随后的全球变暖(预测值0.403 K与观测值0.414 K)和极地变暖放大模式。我们根据单个模式的气候平均状态进行的预测,不仅表现出与观测到的变暖的单个耦合模式比对项目第6阶段模式相当的高地图相关性技能,而且还捕捉到了它们在二氧化碳年增长1%情景下变暖的时间速度。这项工作提供了第一个基于原理的确认,即人类温室气体是1980-2000年至2000-2020年观测到的全球变暖的主要原因,独立于气候模式和统计分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Principle-based adept predictions of global warming from climate mean states.

Distinguishing anthropogenic warming from natural variability and reducing uncertainty in global-warming projections continue to present challenges. Here, we introduce a novel principle-based framework for predicting global warming from climate mean states that is based solely on carbon-dioxide-increasing scenarios without running climate models and relying on statistical trend analysis. By applying this framework to the climate mean state of 1980-2000, we accurately capture the subsequent global warming (0.403 K predicted versus 0.414 K observed) and polar warming amplification patterns. Our predictions from climate mean states of individual models not only exhibit a high map-correlation skill that is comparable to that of individual Coupled Model Intercomparison Project Phase 6 models for the observed warming, but also capture the temporal pace of their warming under the 1% annual CO2-increasing scenario. This work provides the first principle-based confirmation that anthropogenic greenhouse gases are the primary cause of the observed global warming from 1980-2000 to 2000-2020, independently of climate models and statistical analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信