{"title":"预测T-20国际板球高追球结果的概率机器学习模型的最佳选择。","authors":"Syed Asghar Ali Shah, Qamruz Zaman","doi":"10.1080/02640414.2025.2488157","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting high-run chases in cricket is a complex task influenced by various factors, including team rankings, match conditions, pitch behavior, and inning scores. This study evaluates the effectiveness of probabilistic machine learning models, namely Naïve Bayes (NB), Bayesian Network (BN), Bayesian Regularized Neural Network (BRNN), Hidden Naïve Bayes (HNB), Correlation Feature-Based Filter Weighting Naïve Bayes (CFWNB), and Class-Specific Attribute Weighted Naïve Bayes (CAWNB), in predicting high run chases in T20I cricket. Model performance was assessed using accuracy, precision, sensitivity, specificity, F1-score, AUC-ROC, and entropy, while Monte Carlo simulations ensured robustness across multiple iterations. Non-parametric statistical tests were employed due to the non-normal distribution of performance metrics, with the Friedman test revealing significant ranking variations among models. The results demonstrate that CAWNB consistently outperforms other models in terms of accuracy, precision, AUC, and F1-score, making it the most reliable choice for high-run chase prediction. Future research should explore hybrid Bayesian deep learning approaches, real-time data adaptation, and the application of these models to other cricket formats and sports analytics to further enhance predictive performance.</p>","PeriodicalId":17066,"journal":{"name":"Journal of Sports Sciences","volume":" ","pages":"1-19"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal selection of a probabilistic machine learning model for predicting high run chase outcomes in T-20 international cricket.\",\"authors\":\"Syed Asghar Ali Shah, Qamruz Zaman\",\"doi\":\"10.1080/02640414.2025.2488157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predicting high-run chases in cricket is a complex task influenced by various factors, including team rankings, match conditions, pitch behavior, and inning scores. This study evaluates the effectiveness of probabilistic machine learning models, namely Naïve Bayes (NB), Bayesian Network (BN), Bayesian Regularized Neural Network (BRNN), Hidden Naïve Bayes (HNB), Correlation Feature-Based Filter Weighting Naïve Bayes (CFWNB), and Class-Specific Attribute Weighted Naïve Bayes (CAWNB), in predicting high run chases in T20I cricket. Model performance was assessed using accuracy, precision, sensitivity, specificity, F1-score, AUC-ROC, and entropy, while Monte Carlo simulations ensured robustness across multiple iterations. Non-parametric statistical tests were employed due to the non-normal distribution of performance metrics, with the Friedman test revealing significant ranking variations among models. The results demonstrate that CAWNB consistently outperforms other models in terms of accuracy, precision, AUC, and F1-score, making it the most reliable choice for high-run chase prediction. Future research should explore hybrid Bayesian deep learning approaches, real-time data adaptation, and the application of these models to other cricket formats and sports analytics to further enhance predictive performance.</p>\",\"PeriodicalId\":17066,\"journal\":{\"name\":\"Journal of Sports Sciences\",\"volume\":\" \",\"pages\":\"1-19\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sports Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02640414.2025.2488157\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sports Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02640414.2025.2488157","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
Optimal selection of a probabilistic machine learning model for predicting high run chase outcomes in T-20 international cricket.
Predicting high-run chases in cricket is a complex task influenced by various factors, including team rankings, match conditions, pitch behavior, and inning scores. This study evaluates the effectiveness of probabilistic machine learning models, namely Naïve Bayes (NB), Bayesian Network (BN), Bayesian Regularized Neural Network (BRNN), Hidden Naïve Bayes (HNB), Correlation Feature-Based Filter Weighting Naïve Bayes (CFWNB), and Class-Specific Attribute Weighted Naïve Bayes (CAWNB), in predicting high run chases in T20I cricket. Model performance was assessed using accuracy, precision, sensitivity, specificity, F1-score, AUC-ROC, and entropy, while Monte Carlo simulations ensured robustness across multiple iterations. Non-parametric statistical tests were employed due to the non-normal distribution of performance metrics, with the Friedman test revealing significant ranking variations among models. The results demonstrate that CAWNB consistently outperforms other models in terms of accuracy, precision, AUC, and F1-score, making it the most reliable choice for high-run chase prediction. Future research should explore hybrid Bayesian deep learning approaches, real-time data adaptation, and the application of these models to other cricket formats and sports analytics to further enhance predictive performance.
期刊介绍:
The Journal of Sports Sciences has an international reputation for publishing articles of a high standard and is both Medline and Clarivate Analytics-listed. It publishes research on various aspects of the sports and exercise sciences, including anatomy, biochemistry, biomechanics, performance analysis, physiology, psychology, sports medicine and health, as well as coaching and talent identification, kinanthropometry and other interdisciplinary perspectives.
The emphasis of the Journal is on the human sciences, broadly defined and applied to sport and exercise. Besides experimental work in human responses to exercise, the subjects covered will include human responses to technologies such as the design of sports equipment and playing facilities, research in training, selection, performance prediction or modification, and stress reduction or manifestation. Manuscripts considered for publication include those dealing with original investigations of exercise, validation of technological innovations in sport or comprehensive reviews of topics relevant to the scientific study of sport.