{"title":"Mtld的诱导表达促进了长聚球菌PCC 7942中甘露醇合成途径的引入。","authors":"Jiahui Sun, Jinyu Cui, Xuejing Xu, Jinhui Tang, Huili Sun, Xiangxiao Liu, Xiangyi Yuan, Guodong Luan, Xuefeng Lu","doi":"10.3389/fbioe.2025.1575266","DOIUrl":null,"url":null,"abstract":"<p><p>Mannitol is a valuable sugar alcohol, extensively used across various industries. Cyanobacteria show potential as future platforms for mannitol production, utilizing CO<sub>2</sub> and solar energy directly. The proof-of-concept has been demonstrated by introducing a two-step pathway in cyanobacteria, converting fructose-6-phosphate to mannitol-1-phosphate and sequentially to mannitol. However, recombinant strains generally faced issues of genetic instability or low titers, consequently affecting the long-term mannitol production. In this work, the construction strategy for engineering mannitol production in <i>Synechococcus elongatus</i> PCC 7942, based on commonly adopted pathway comprising mannitol-1-phosphate dehydrogenase (Mtld) and mannitol-1-phosphatase (M1Pase), was optimized. The results demonstrated that the sequential introduction of <i>m1p</i> and <i>mtld</i> was required to obtain mannitol-producing strains. We further manipulated the abundances of Mtld with a theophylline dose-responsive riboswitch approach, and by combining it with the overexpression of <i>m1p</i>, we successfully obtained a recombinant strain producing 1.5 g/L mannitol under optimal conditions, the highest cyanobacterial yield to date. In addition, the controlled expression of <i>mtld</i> was demonstrated to remarkably augment the genetic stability of the mutant under long-term culturing circumstances, which continued to secrete mannitol after more than 2 months of cultivation without the addition of theophylline, and the mannitol biosynthesis operon did not undergo any spontaneous mutation. The findings in this work provided novel insights into the area of cyanobacteria mannitol metabolism engineering, and would inspire researchers to construct strains with different gene regulatory strategies for efficient photosynthetic biosynthesis.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1575266"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968706/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inducible Mtld expression facilitated the introduction of the mannitol synthesis pathway in <i>Synechococcus elongatus</i> PCC 7942.\",\"authors\":\"Jiahui Sun, Jinyu Cui, Xuejing Xu, Jinhui Tang, Huili Sun, Xiangxiao Liu, Xiangyi Yuan, Guodong Luan, Xuefeng Lu\",\"doi\":\"10.3389/fbioe.2025.1575266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mannitol is a valuable sugar alcohol, extensively used across various industries. Cyanobacteria show potential as future platforms for mannitol production, utilizing CO<sub>2</sub> and solar energy directly. The proof-of-concept has been demonstrated by introducing a two-step pathway in cyanobacteria, converting fructose-6-phosphate to mannitol-1-phosphate and sequentially to mannitol. However, recombinant strains generally faced issues of genetic instability or low titers, consequently affecting the long-term mannitol production. In this work, the construction strategy for engineering mannitol production in <i>Synechococcus elongatus</i> PCC 7942, based on commonly adopted pathway comprising mannitol-1-phosphate dehydrogenase (Mtld) and mannitol-1-phosphatase (M1Pase), was optimized. The results demonstrated that the sequential introduction of <i>m1p</i> and <i>mtld</i> was required to obtain mannitol-producing strains. We further manipulated the abundances of Mtld with a theophylline dose-responsive riboswitch approach, and by combining it with the overexpression of <i>m1p</i>, we successfully obtained a recombinant strain producing 1.5 g/L mannitol under optimal conditions, the highest cyanobacterial yield to date. In addition, the controlled expression of <i>mtld</i> was demonstrated to remarkably augment the genetic stability of the mutant under long-term culturing circumstances, which continued to secrete mannitol after more than 2 months of cultivation without the addition of theophylline, and the mannitol biosynthesis operon did not undergo any spontaneous mutation. The findings in this work provided novel insights into the area of cyanobacteria mannitol metabolism engineering, and would inspire researchers to construct strains with different gene regulatory strategies for efficient photosynthetic biosynthesis.</p>\",\"PeriodicalId\":12444,\"journal\":{\"name\":\"Frontiers in Bioengineering and Biotechnology\",\"volume\":\"13 \",\"pages\":\"1575266\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968706/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Bioengineering and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fbioe.2025.1575266\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1575266","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Inducible Mtld expression facilitated the introduction of the mannitol synthesis pathway in Synechococcus elongatus PCC 7942.
Mannitol is a valuable sugar alcohol, extensively used across various industries. Cyanobacteria show potential as future platforms for mannitol production, utilizing CO2 and solar energy directly. The proof-of-concept has been demonstrated by introducing a two-step pathway in cyanobacteria, converting fructose-6-phosphate to mannitol-1-phosphate and sequentially to mannitol. However, recombinant strains generally faced issues of genetic instability or low titers, consequently affecting the long-term mannitol production. In this work, the construction strategy for engineering mannitol production in Synechococcus elongatus PCC 7942, based on commonly adopted pathway comprising mannitol-1-phosphate dehydrogenase (Mtld) and mannitol-1-phosphatase (M1Pase), was optimized. The results demonstrated that the sequential introduction of m1p and mtld was required to obtain mannitol-producing strains. We further manipulated the abundances of Mtld with a theophylline dose-responsive riboswitch approach, and by combining it with the overexpression of m1p, we successfully obtained a recombinant strain producing 1.5 g/L mannitol under optimal conditions, the highest cyanobacterial yield to date. In addition, the controlled expression of mtld was demonstrated to remarkably augment the genetic stability of the mutant under long-term culturing circumstances, which continued to secrete mannitol after more than 2 months of cultivation without the addition of theophylline, and the mannitol biosynthesis operon did not undergo any spontaneous mutation. The findings in this work provided novel insights into the area of cyanobacteria mannitol metabolism engineering, and would inspire researchers to construct strains with different gene regulatory strategies for efficient photosynthetic biosynthesis.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.