Wei Zhou, Fan Feng, Jieli Zhang, Shuang Cao, Yunzhi Zhou, Yanming Li
{"title":"ph敏感卟啉金属-有机框架控制对甲苯磺酰胺的递送和光动力癌症治疗。","authors":"Wei Zhou, Fan Feng, Jieli Zhang, Shuang Cao, Yunzhi Zhou, Yanming Li","doi":"10.2147/DDDT.S504891","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Photodynamic therapy (PDT) is a promising approach for tumor treatment. PDT for treating lung squamous cell carcinoma (LSCC) under the guidance of bronchoscopy has great potential for development. However, the use of high-intensity lasers in treatment may pose a risk of tissue damage. To address this issue, enhancing the sensitivity of tumor tissue to phototherapy is highly valuable.</p><p><strong>Methods: </strong>In this study, a simple method was employed to prepare porphyrin-metal framework nanoparticles (NPs), referred to as HA-PTS@PCN. The design of these NPs is based on the concept of tumor sensitization, constructed with the porphyrin-based metal-organic framework compound PCN-224 to load the drug para-toluenesulfonamide (PTS).</p><p><strong>Results: </strong>Multiple experiments have demonstrated that these NPs can be effectively absorbed and selectively release PTS within the acidic tumor microenvironment. Under 660 nm laser irradiation, the material releases reactive oxygen species, demonstrating effective photodynamic therapeutic effects. Additionally, due to the tumor-sensitizing properties of PTS, the treatment efficacy of these NPs on LSCC is significantly greater than that of PCN-224 alone. Both in vitro and in vivo studies confirmed that combining tumor sensitization strategies with PDT therapy for LSCC significantly enhances anticancer effects.</p><p><strong>Discussion: </strong>This study provides a universal strategy for preparing drug-loaded PDT nanoplatforms and offers a new approach for developing nanomedicine with tumor-sensitizing effects.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"2351-2368"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971995/pdf/","citationCount":"0","resultStr":"{\"title\":\"pH-Sensitive Porphyrin Metal-Organic Frameworks for Controlled Delivery of Para-Toluenesulfonamide and Photodynamic Cancer Therapy.\",\"authors\":\"Wei Zhou, Fan Feng, Jieli Zhang, Shuang Cao, Yunzhi Zhou, Yanming Li\",\"doi\":\"10.2147/DDDT.S504891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Photodynamic therapy (PDT) is a promising approach for tumor treatment. PDT for treating lung squamous cell carcinoma (LSCC) under the guidance of bronchoscopy has great potential for development. However, the use of high-intensity lasers in treatment may pose a risk of tissue damage. To address this issue, enhancing the sensitivity of tumor tissue to phototherapy is highly valuable.</p><p><strong>Methods: </strong>In this study, a simple method was employed to prepare porphyrin-metal framework nanoparticles (NPs), referred to as HA-PTS@PCN. The design of these NPs is based on the concept of tumor sensitization, constructed with the porphyrin-based metal-organic framework compound PCN-224 to load the drug para-toluenesulfonamide (PTS).</p><p><strong>Results: </strong>Multiple experiments have demonstrated that these NPs can be effectively absorbed and selectively release PTS within the acidic tumor microenvironment. Under 660 nm laser irradiation, the material releases reactive oxygen species, demonstrating effective photodynamic therapeutic effects. Additionally, due to the tumor-sensitizing properties of PTS, the treatment efficacy of these NPs on LSCC is significantly greater than that of PCN-224 alone. Both in vitro and in vivo studies confirmed that combining tumor sensitization strategies with PDT therapy for LSCC significantly enhances anticancer effects.</p><p><strong>Discussion: </strong>This study provides a universal strategy for preparing drug-loaded PDT nanoplatforms and offers a new approach for developing nanomedicine with tumor-sensitizing effects.</p>\",\"PeriodicalId\":11290,\"journal\":{\"name\":\"Drug Design, Development and Therapy\",\"volume\":\"19 \",\"pages\":\"2351-2368\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971995/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Design, Development and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/DDDT.S504891\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S504891","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
pH-Sensitive Porphyrin Metal-Organic Frameworks for Controlled Delivery of Para-Toluenesulfonamide and Photodynamic Cancer Therapy.
Introduction: Photodynamic therapy (PDT) is a promising approach for tumor treatment. PDT for treating lung squamous cell carcinoma (LSCC) under the guidance of bronchoscopy has great potential for development. However, the use of high-intensity lasers in treatment may pose a risk of tissue damage. To address this issue, enhancing the sensitivity of tumor tissue to phototherapy is highly valuable.
Methods: In this study, a simple method was employed to prepare porphyrin-metal framework nanoparticles (NPs), referred to as HA-PTS@PCN. The design of these NPs is based on the concept of tumor sensitization, constructed with the porphyrin-based metal-organic framework compound PCN-224 to load the drug para-toluenesulfonamide (PTS).
Results: Multiple experiments have demonstrated that these NPs can be effectively absorbed and selectively release PTS within the acidic tumor microenvironment. Under 660 nm laser irradiation, the material releases reactive oxygen species, demonstrating effective photodynamic therapeutic effects. Additionally, due to the tumor-sensitizing properties of PTS, the treatment efficacy of these NPs on LSCC is significantly greater than that of PCN-224 alone. Both in vitro and in vivo studies confirmed that combining tumor sensitization strategies with PDT therapy for LSCC significantly enhances anticancer effects.
Discussion: This study provides a universal strategy for preparing drug-loaded PDT nanoplatforms and offers a new approach for developing nanomedicine with tumor-sensitizing effects.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.