IF 5.2 1区 生物学 Q1 BIOLOGY
Wenbo Hua, Ruixia Cui, Heran Yang, Jingyao Zhang, Chang Liu, Jian Sun
{"title":"Uncovering critical transitions and molecule mechanisms in disease progressions using Gaussian graphical optimal transport.","authors":"Wenbo Hua, Ruixia Cui, Heran Yang, Jingyao Zhang, Chang Liu, Jian Sun","doi":"10.1038/s42003-025-07995-z","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding disease progression is crucial for detecting critical transitions and finding trigger molecules, facilitating early diagnosis interventions. However, the high dimensionality of data and the lack of aligned samples across disease stages have posed challenges in addressing these tasks. We present a computational framework, Gaussian Graphical Optimal Transport (GGOT), for analyzing disease progressions. The proposed GGOT uses Gaussian graphical models, incorporating protein interaction networks, to characterize the data distributions at different disease stages. Then we use population-level optimal transport to calculate the Wasserstein distances and transport between stages, enabling us to detect critical transitions. By analyzing the per-molecule transport distance, we quantify the importance of each molecule and identify trigger molecules. Moreover, GGOT predicts the occurrence of critical transitions in unseen samples and visualizes the disease progression process. We apply GGOT to the simulation dataset and six disease datasets with varying disease progression rates to substantiate its effectiveness. Compared to existing methods, our proposed GGOT exhibits superior performance in detecting critical transitions.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"575"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973219/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07995-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解疾病进展对于检测关键转变和寻找触发分子、促进早期诊断干预至关重要。然而,数据的高维度和缺乏跨疾病阶段的对齐样本给解决这些任务带来了挑战。我们提出了一种用于分析疾病进展的计算框架--高斯图形优化传输(GGOT)。拟议的 GGOT 使用高斯图形模型,结合蛋白质相互作用网络,来描述不同疾病阶段的数据分布特征。然后,我们利用种群级最优传输计算瓦瑟斯坦距离和阶段间的传输,从而检测临界转换。通过分析每个分子的传输距离,我们可以量化每个分子的重要性并识别触发分子。此外,GGOT 还能预测未见样本中临界转换的发生,并将疾病进展过程可视化。我们将 GGOT 应用于模拟数据集和六种不同疾病进展率的疾病数据集,以证实其有效性。与现有方法相比,我们提出的 GGOT 在检测临界转换方面表现出更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncovering critical transitions and molecule mechanisms in disease progressions using Gaussian graphical optimal transport.

Understanding disease progression is crucial for detecting critical transitions and finding trigger molecules, facilitating early diagnosis interventions. However, the high dimensionality of data and the lack of aligned samples across disease stages have posed challenges in addressing these tasks. We present a computational framework, Gaussian Graphical Optimal Transport (GGOT), for analyzing disease progressions. The proposed GGOT uses Gaussian graphical models, incorporating protein interaction networks, to characterize the data distributions at different disease stages. Then we use population-level optimal transport to calculate the Wasserstein distances and transport between stages, enabling us to detect critical transitions. By analyzing the per-molecule transport distance, we quantify the importance of each molecule and identify trigger molecules. Moreover, GGOT predicts the occurrence of critical transitions in unseen samples and visualizes the disease progression process. We apply GGOT to the simulation dataset and six disease datasets with varying disease progression rates to substantiate its effectiveness. Compared to existing methods, our proposed GGOT exhibits superior performance in detecting critical transitions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信