Xinwei Dong, Xu Zhao, Jianing Xu, Qianqian Chen, Hanwen Luo, Fuxin Zheng, Tao Zhang, Yansheng Liu
{"title":"高光谱显微镜中Ag纳米阵列增强的光谱特征用于cnn微塑料分类。","authors":"Xinwei Dong, Xu Zhao, Jianing Xu, Qianqian Chen, Hanwen Luo, Fuxin Zheng, Tao Zhang, Yansheng Liu","doi":"10.3389/fchem.2025.1562743","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastics are a pervasive pollutant in aquatic ecosystems, raising critical environmental and public health concerns and driving the need for advanced detection technologies. Microscopic hyperspectral imaging (micro-HSI), known for its ability to simultaneously capture spatial and spectral information, has shown promise in microplastic analysis. However, its widespread application is hindered by limitations such as low signal-to-noise ratios (SNR) and reduced sensitivity to smaller microplastic particles. To address these challenges, this study investigates the use of Ag nanoarrays as reflective substrates for micro-HSI. The localized surface plasmon resonance (LSPR) effect of Ag nanoarrays enhances spectral resolution by suppressing background reflections and isolating microplastic reflection bands from interference. This improvement results in significantly increased SNR and more distinct spectral features. When analyzed using a 3D-2D convolutional neural network (3D-2D CNN), the integration of Ag nanoarrays improved classification accuracy from 90.17% to 98.98%. These enhancements were further validated through Support Vector Machine (SVM) analyses, demonstrating the robustness and reliability of the proposed approach. This study demonstrates the potential of combining Ag nanoarrays with 3D-2D CNN models to enhance micro-HSI performance, offering a novel and effective solution for precise microplastics detection and advancing chemical analysis, environmental monitoring, and related fields.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"13 ","pages":"1562743"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968667/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced spectral signatures with Ag nanoarrays in hyperspectral microscopy for CNN-based microplastics classfication.\",\"authors\":\"Xinwei Dong, Xu Zhao, Jianing Xu, Qianqian Chen, Hanwen Luo, Fuxin Zheng, Tao Zhang, Yansheng Liu\",\"doi\":\"10.3389/fchem.2025.1562743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microplastics are a pervasive pollutant in aquatic ecosystems, raising critical environmental and public health concerns and driving the need for advanced detection technologies. Microscopic hyperspectral imaging (micro-HSI), known for its ability to simultaneously capture spatial and spectral information, has shown promise in microplastic analysis. However, its widespread application is hindered by limitations such as low signal-to-noise ratios (SNR) and reduced sensitivity to smaller microplastic particles. To address these challenges, this study investigates the use of Ag nanoarrays as reflective substrates for micro-HSI. The localized surface plasmon resonance (LSPR) effect of Ag nanoarrays enhances spectral resolution by suppressing background reflections and isolating microplastic reflection bands from interference. This improvement results in significantly increased SNR and more distinct spectral features. When analyzed using a 3D-2D convolutional neural network (3D-2D CNN), the integration of Ag nanoarrays improved classification accuracy from 90.17% to 98.98%. These enhancements were further validated through Support Vector Machine (SVM) analyses, demonstrating the robustness and reliability of the proposed approach. This study demonstrates the potential of combining Ag nanoarrays with 3D-2D CNN models to enhance micro-HSI performance, offering a novel and effective solution for precise microplastics detection and advancing chemical analysis, environmental monitoring, and related fields.</p>\",\"PeriodicalId\":12421,\"journal\":{\"name\":\"Frontiers in Chemistry\",\"volume\":\"13 \",\"pages\":\"1562743\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968667/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3389/fchem.2025.1562743\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2025.1562743","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced spectral signatures with Ag nanoarrays in hyperspectral microscopy for CNN-based microplastics classfication.
Microplastics are a pervasive pollutant in aquatic ecosystems, raising critical environmental and public health concerns and driving the need for advanced detection technologies. Microscopic hyperspectral imaging (micro-HSI), known for its ability to simultaneously capture spatial and spectral information, has shown promise in microplastic analysis. However, its widespread application is hindered by limitations such as low signal-to-noise ratios (SNR) and reduced sensitivity to smaller microplastic particles. To address these challenges, this study investigates the use of Ag nanoarrays as reflective substrates for micro-HSI. The localized surface plasmon resonance (LSPR) effect of Ag nanoarrays enhances spectral resolution by suppressing background reflections and isolating microplastic reflection bands from interference. This improvement results in significantly increased SNR and more distinct spectral features. When analyzed using a 3D-2D convolutional neural network (3D-2D CNN), the integration of Ag nanoarrays improved classification accuracy from 90.17% to 98.98%. These enhancements were further validated through Support Vector Machine (SVM) analyses, demonstrating the robustness and reliability of the proposed approach. This study demonstrates the potential of combining Ag nanoarrays with 3D-2D CNN models to enhance micro-HSI performance, offering a novel and effective solution for precise microplastics detection and advancing chemical analysis, environmental monitoring, and related fields.
期刊介绍:
Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide.
Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”.
All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.