Oliver B Dilger, Mason F Carstens, Cole E Bothun, Ashley N Payne, Daniel J Berry, Joaquin Sanchez-Sotelo, Mark E Morrey, Roman Thaler, Amel Dudakovic, Matthew P Abdel
{"title":"诱导细胞自噬损害TGF-β1介导的人膝关节原代成纤维细胞细胞外基质沉积。","authors":"Oliver B Dilger, Mason F Carstens, Cole E Bothun, Ashley N Payne, Daniel J Berry, Joaquin Sanchez-Sotelo, Mark E Morrey, Roman Thaler, Amel Dudakovic, Matthew P Abdel","doi":"10.1302/2046-3758.144.BJR-2024-0312.R1","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>To evaluate the role of autophagy in primary knee fibroblasts undergoing myofibroblast differentiation as an in vitro model of arthrofibrosis, a complication after total knee arthroplasty characterized by aberrant intra-articular scar tissue formation and limited range of motion.</p><p><strong>Methods: </strong>We conducted a therapeutic screen of autophagic-modulating therapies in primary human knee fibroblasts undergoing transforming growth factor-beta 1 (TGF-β1)-mediated myofibroblast differentiation. Autophagy was induced pharmacologically with rapamycin or by amino acid deprivation. Picrosirius red staining was performed to quantify collagen deposition. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were conducted to evaluate fibrotic gene expression levels.</p><p><strong>Results: </strong>Rapamycin, an mTOR complex 1 (mTORC1) inhibitor and autophagy inducer, reduced TGF-β1-mediated collagen deposition. Interestingly, we simultaneously report that myofibrogenic genes, including <i>ACTA2</i>, were highly upregulated following rapamycin-TGF-β1 treatment. When autophagy was induced through amino acid deprivation, we demonstrated suppressed extracellular matrix levels, fibrotic gene expression (e.g. <i>ACTA2</i>), and SMAD2 phosphorylation levels in TGF-β1-stimulated fibroblasts.</p><p><strong>Conclusion: </strong>Our findings demonstrate that the induction of cellular autophagy suppresses TGF-β1-induced collagen deposition in primary human knee fibroblasts. Taken together, these data suggest that cellular autophagy may be prophylactic against the pathogenesis of arthrofibrosis.</p>","PeriodicalId":9074,"journal":{"name":"Bone & Joint Research","volume":"14 4","pages":"328-337"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11975063/pdf/","citationCount":"0","resultStr":"{\"title\":\"Induction of cellular autophagy impairs TGF-β1-mediated extracellular matrix deposition in primary human knee fibroblasts.\",\"authors\":\"Oliver B Dilger, Mason F Carstens, Cole E Bothun, Ashley N Payne, Daniel J Berry, Joaquin Sanchez-Sotelo, Mark E Morrey, Roman Thaler, Amel Dudakovic, Matthew P Abdel\",\"doi\":\"10.1302/2046-3758.144.BJR-2024-0312.R1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>To evaluate the role of autophagy in primary knee fibroblasts undergoing myofibroblast differentiation as an in vitro model of arthrofibrosis, a complication after total knee arthroplasty characterized by aberrant intra-articular scar tissue formation and limited range of motion.</p><p><strong>Methods: </strong>We conducted a therapeutic screen of autophagic-modulating therapies in primary human knee fibroblasts undergoing transforming growth factor-beta 1 (TGF-β1)-mediated myofibroblast differentiation. Autophagy was induced pharmacologically with rapamycin or by amino acid deprivation. Picrosirius red staining was performed to quantify collagen deposition. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were conducted to evaluate fibrotic gene expression levels.</p><p><strong>Results: </strong>Rapamycin, an mTOR complex 1 (mTORC1) inhibitor and autophagy inducer, reduced TGF-β1-mediated collagen deposition. Interestingly, we simultaneously report that myofibrogenic genes, including <i>ACTA2</i>, were highly upregulated following rapamycin-TGF-β1 treatment. When autophagy was induced through amino acid deprivation, we demonstrated suppressed extracellular matrix levels, fibrotic gene expression (e.g. <i>ACTA2</i>), and SMAD2 phosphorylation levels in TGF-β1-stimulated fibroblasts.</p><p><strong>Conclusion: </strong>Our findings demonstrate that the induction of cellular autophagy suppresses TGF-β1-induced collagen deposition in primary human knee fibroblasts. Taken together, these data suggest that cellular autophagy may be prophylactic against the pathogenesis of arthrofibrosis.</p>\",\"PeriodicalId\":9074,\"journal\":{\"name\":\"Bone & Joint Research\",\"volume\":\"14 4\",\"pages\":\"328-337\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11975063/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone & Joint Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1302/2046-3758.144.BJR-2024-0312.R1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone & Joint Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1302/2046-3758.144.BJR-2024-0312.R1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Induction of cellular autophagy impairs TGF-β1-mediated extracellular matrix deposition in primary human knee fibroblasts.
Aims: To evaluate the role of autophagy in primary knee fibroblasts undergoing myofibroblast differentiation as an in vitro model of arthrofibrosis, a complication after total knee arthroplasty characterized by aberrant intra-articular scar tissue formation and limited range of motion.
Methods: We conducted a therapeutic screen of autophagic-modulating therapies in primary human knee fibroblasts undergoing transforming growth factor-beta 1 (TGF-β1)-mediated myofibroblast differentiation. Autophagy was induced pharmacologically with rapamycin or by amino acid deprivation. Picrosirius red staining was performed to quantify collagen deposition. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were conducted to evaluate fibrotic gene expression levels.
Results: Rapamycin, an mTOR complex 1 (mTORC1) inhibitor and autophagy inducer, reduced TGF-β1-mediated collagen deposition. Interestingly, we simultaneously report that myofibrogenic genes, including ACTA2, were highly upregulated following rapamycin-TGF-β1 treatment. When autophagy was induced through amino acid deprivation, we demonstrated suppressed extracellular matrix levels, fibrotic gene expression (e.g. ACTA2), and SMAD2 phosphorylation levels in TGF-β1-stimulated fibroblasts.
Conclusion: Our findings demonstrate that the induction of cellular autophagy suppresses TGF-β1-induced collagen deposition in primary human knee fibroblasts. Taken together, these data suggest that cellular autophagy may be prophylactic against the pathogenesis of arthrofibrosis.