{"title":"罗伊氏芽孢杆菌细胞表面蛋白肋结构域的化学位移分配。","authors":"Yi Xue, Xue Kang","doi":"10.1007/s12104-025-10228-3","DOIUrl":null,"url":null,"abstract":"<p><p>The Rib domain, a conserved structural element found in Gram-positive bacterial cell surface proteins, plays a role in bacterial virulence and is a potential target for vaccine development. Despite the availability of high-resolution crystallographic structures, the precise functional role of the Rib domain remains elusive. Here, we report the chemical shift assignments of the Rib domain from a cell surface protein of Limosilactobacillus reuteri, providing a foundational step toward understanding its potential involvement in host-bacteria interactions.</p>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical shift assignments of the rib domain in a cell surface protein from Limosilactobacillus reuteri.\",\"authors\":\"Yi Xue, Xue Kang\",\"doi\":\"10.1007/s12104-025-10228-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Rib domain, a conserved structural element found in Gram-positive bacterial cell surface proteins, plays a role in bacterial virulence and is a potential target for vaccine development. Despite the availability of high-resolution crystallographic structures, the precise functional role of the Rib domain remains elusive. Here, we report the chemical shift assignments of the Rib domain from a cell surface protein of Limosilactobacillus reuteri, providing a foundational step toward understanding its potential involvement in host-bacteria interactions.</p>\",\"PeriodicalId\":492,\"journal\":{\"name\":\"Biomolecular NMR Assignments\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular NMR Assignments\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12104-025-10228-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12104-025-10228-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Chemical shift assignments of the rib domain in a cell surface protein from Limosilactobacillus reuteri.
The Rib domain, a conserved structural element found in Gram-positive bacterial cell surface proteins, plays a role in bacterial virulence and is a potential target for vaccine development. Despite the availability of high-resolution crystallographic structures, the precise functional role of the Rib domain remains elusive. Here, we report the chemical shift assignments of the Rib domain from a cell surface protein of Limosilactobacillus reuteri, providing a foundational step toward understanding its potential involvement in host-bacteria interactions.
期刊介绍:
Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties.
Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.