高选择性CO2吸附超交联聚合物的孔隙工程和功能化。

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Yahya Alemin, Jiarui Hu, Peixuan Xie, Xiaoyan Wang, Hui Gao, Bien Tan
{"title":"高选择性CO2吸附超交联聚合物的孔隙工程和功能化。","authors":"Yahya Alemin, Jiarui Hu, Peixuan Xie, Xiaoyan Wang, Hui Gao, Bien Tan","doi":"10.1002/marc.202500020","DOIUrl":null,"url":null,"abstract":"<p><p>Selective carbon dioxide (CO₂) capture from industrial processes is vital for reducing emissions associated with fossil fuel combustion. Achieving both high CO₂ adsorption capacity and excellent CO₂/N₂ selectivity, however, remains a significant challenge. In this study, a novel strategy is introduced that integrates porosity engineering using various cross-linkers-dimethoxymethane (F), p-dichloroxylene (D), and dibromomethane (B)-with post-synthetic modifications to incorporate nitro (─NO₂) and amino (─NH₂) functional groups into the polymer matrix. Nitration of hyper-cross-linked polymer based on dimethoxymethane (HCP-F) yields HCP-F-NO₂, which, upon reduction, produces the amine-functionalized framework HCP-F-NH₂. Both HCP-F-NO₂ and HCP-F-NH₂ demonstrate relatively high CO₂ uptake. Despite its lower surface area (784 m<sup>2</sup> g⁻¹) compared to HCP-F-NO₂ (1066 m<sup>2</sup> g⁻¹), HCP-F-NH₂ exhibits superior CO₂/N₂ selectivity of 100, compared to 70 for HCP-F-NO₂. Furthermore, ideal adsorbed solution theory (IAST) selectivity calculations at 298 K and 1 bar for 15:85 CO<sub>2</sub>/N<sub>2</sub> confirm enhanced CO<sub>2</sub>/N<sub>2</sub> selectivity after post-synthetic modification, with HCP-F-NH<sub>2</sub> reaching the highest value (64), breakthrough experiments at 298 K with 3 mL min<sup>-1</sup> flow rate validate increased CO<sub>2</sub> retention, while regeneration tests confirm structural stability and recyclability, reinforcing the potential of functionalized HCPs for CO<sub>2</sub> capture applications.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2500020"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porosity Engineering and Functionalization of Hyper-Cross-Linked Polymers for Highly Selective CO<sub>2</sub> Adsorption.\",\"authors\":\"Yahya Alemin, Jiarui Hu, Peixuan Xie, Xiaoyan Wang, Hui Gao, Bien Tan\",\"doi\":\"10.1002/marc.202500020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Selective carbon dioxide (CO₂) capture from industrial processes is vital for reducing emissions associated with fossil fuel combustion. Achieving both high CO₂ adsorption capacity and excellent CO₂/N₂ selectivity, however, remains a significant challenge. In this study, a novel strategy is introduced that integrates porosity engineering using various cross-linkers-dimethoxymethane (F), p-dichloroxylene (D), and dibromomethane (B)-with post-synthetic modifications to incorporate nitro (─NO₂) and amino (─NH₂) functional groups into the polymer matrix. Nitration of hyper-cross-linked polymer based on dimethoxymethane (HCP-F) yields HCP-F-NO₂, which, upon reduction, produces the amine-functionalized framework HCP-F-NH₂. Both HCP-F-NO₂ and HCP-F-NH₂ demonstrate relatively high CO₂ uptake. Despite its lower surface area (784 m<sup>2</sup> g⁻¹) compared to HCP-F-NO₂ (1066 m<sup>2</sup> g⁻¹), HCP-F-NH₂ exhibits superior CO₂/N₂ selectivity of 100, compared to 70 for HCP-F-NO₂. Furthermore, ideal adsorbed solution theory (IAST) selectivity calculations at 298 K and 1 bar for 15:85 CO<sub>2</sub>/N<sub>2</sub> confirm enhanced CO<sub>2</sub>/N<sub>2</sub> selectivity after post-synthetic modification, with HCP-F-NH<sub>2</sub> reaching the highest value (64), breakthrough experiments at 298 K with 3 mL min<sup>-1</sup> flow rate validate increased CO<sub>2</sub> retention, while regeneration tests confirm structural stability and recyclability, reinforcing the potential of functionalized HCPs for CO<sub>2</sub> capture applications.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\" \",\"pages\":\"e2500020\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202500020\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202500020","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

从工业流程中选择性地捕获二氧化碳(CO₂)对于减少化石燃料燃烧产生的排放至关重要。然而,要同时实现高 CO₂ 吸附能力和出色的 CO₂/N₂ 选择性,仍然是一项重大挑战。本研究介绍了一种新策略,即利用各种交联剂--二甲氧基甲烷(F)、对二氯二甲苯(D)和二溴甲烷(B)--进行孔隙率工程,并通过后合成修饰将硝基(-NO₂)和氨基(-NH₂)官能团加入聚合物基体。硝化基于二甲氧基甲烷(HCP-F)的超交联聚合物可生成 HCP-F-NO₂,还原后可生成胺功能化框架 HCP-F-NH₂。HCP-F-NO₂ 和 HCP-F-NH₂ 都具有相对较高的 CO₂ 吸收能力。尽管 HCP-F-NH₂ 的表面积(784 m2 g-¹)低于 HCP-F-NO₂(1066 m2 g-¹),但 HCP-F-NH₂ 的 CO₂/N₂ 选择性高达 100,而 HCP-F-NO₂ 只有 70。此外,在 298 K 和 1 bar 条件下对 15:85 CO2/N2 进行的理想吸附溶液理论(IAST)选择性计算证实,经过后合成修饰后,CO2/N2 的选择性得到增强,其中 HCP-F-NH2 的选择性达到最高值(64);在 298 K 条件下以 3 mL min-1 的流速进行的突破实验验证了二氧化碳截留率的提高,而再生测试则证实了其结构稳定性和可回收性,从而增强了功能化 HCP 在二氧化碳捕获应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Porosity Engineering and Functionalization of Hyper-Cross-Linked Polymers for Highly Selective CO2 Adsorption.

Selective carbon dioxide (CO₂) capture from industrial processes is vital for reducing emissions associated with fossil fuel combustion. Achieving both high CO₂ adsorption capacity and excellent CO₂/N₂ selectivity, however, remains a significant challenge. In this study, a novel strategy is introduced that integrates porosity engineering using various cross-linkers-dimethoxymethane (F), p-dichloroxylene (D), and dibromomethane (B)-with post-synthetic modifications to incorporate nitro (─NO₂) and amino (─NH₂) functional groups into the polymer matrix. Nitration of hyper-cross-linked polymer based on dimethoxymethane (HCP-F) yields HCP-F-NO₂, which, upon reduction, produces the amine-functionalized framework HCP-F-NH₂. Both HCP-F-NO₂ and HCP-F-NH₂ demonstrate relatively high CO₂ uptake. Despite its lower surface area (784 m2 g⁻¹) compared to HCP-F-NO₂ (1066 m2 g⁻¹), HCP-F-NH₂ exhibits superior CO₂/N₂ selectivity of 100, compared to 70 for HCP-F-NO₂. Furthermore, ideal adsorbed solution theory (IAST) selectivity calculations at 298 K and 1 bar for 15:85 CO2/N2 confirm enhanced CO2/N2 selectivity after post-synthetic modification, with HCP-F-NH2 reaching the highest value (64), breakthrough experiments at 298 K with 3 mL min-1 flow rate validate increased CO2 retention, while regeneration tests confirm structural stability and recyclability, reinforcing the potential of functionalized HCPs for CO2 capture applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信