扩展层间距的氧掺杂MoS2用于快速稳定的多硫化物转化。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wenqi Yan, Jinglin Xian, Shunan Zhang, Jiarui Zhang, Kaisi Liu, Jin-Lin Yang, Feng Tao, Ruiping Liu, Qi Liu, Peihua Yang
{"title":"扩展层间距的氧掺杂MoS2用于快速稳定的多硫化物转化。","authors":"Wenqi Yan,&nbsp;Jinglin Xian,&nbsp;Shunan Zhang,&nbsp;Jiarui Zhang,&nbsp;Kaisi Liu,&nbsp;Jin-Lin Yang,&nbsp;Feng Tao,&nbsp;Ruiping Liu,&nbsp;Qi Liu,&nbsp;Peihua Yang","doi":"10.1002/advs.202502834","DOIUrl":null,"url":null,"abstract":"<p>Lithium–sulfur batteries face challenges such as the polysulfide shuttle effect and sluggish redox kinetics, leading to poor sulfur utilization and limited cyclic stability. Herein, an oxygen-doped engineering approach is presented to achieve pillar-free interlayer extension of MoS<sub>2</sub> (E-MoS<sub>2</sub>) for lithium polysulfide conversion. E-MoS<sub>2</sub> features expanded interlayer spacing (from 0.63 to 0.95 nm), improved conductivity, and an optimized Mo <i>d</i> band center, which collectively enhances polysulfide conversion efficiency. Consequently, cathodes with E-MoS<sub>2</sub> deliver a capacity of 638 mAh g<sup>−1</sup> after 600 cycles at 2 C (0.046% decay/cycle) and an areal capacity of 12.0 mAh cm<sup>−2</sup> under practical conditions (12 mg cm<sup>−2</sup> S loading, E/S = 4 µL mg<sup>−1</sup>). This work highlights interlayer engineering as a key strategy for optimizing MoS<sub>2</sub> catalysts in conversion-type batteries.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 26","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202502834","citationCount":"0","resultStr":"{\"title\":\"Oxygen-Doped MoS2 with Expanded Interlayer Spacing for Rapid and Stable Polysulfide Conversion\",\"authors\":\"Wenqi Yan,&nbsp;Jinglin Xian,&nbsp;Shunan Zhang,&nbsp;Jiarui Zhang,&nbsp;Kaisi Liu,&nbsp;Jin-Lin Yang,&nbsp;Feng Tao,&nbsp;Ruiping Liu,&nbsp;Qi Liu,&nbsp;Peihua Yang\",\"doi\":\"10.1002/advs.202502834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lithium–sulfur batteries face challenges such as the polysulfide shuttle effect and sluggish redox kinetics, leading to poor sulfur utilization and limited cyclic stability. Herein, an oxygen-doped engineering approach is presented to achieve pillar-free interlayer extension of MoS<sub>2</sub> (E-MoS<sub>2</sub>) for lithium polysulfide conversion. E-MoS<sub>2</sub> features expanded interlayer spacing (from 0.63 to 0.95 nm), improved conductivity, and an optimized Mo <i>d</i> band center, which collectively enhances polysulfide conversion efficiency. Consequently, cathodes with E-MoS<sub>2</sub> deliver a capacity of 638 mAh g<sup>−1</sup> after 600 cycles at 2 C (0.046% decay/cycle) and an areal capacity of 12.0 mAh cm<sup>−2</sup> under practical conditions (12 mg cm<sup>−2</sup> S loading, E/S = 4 µL mg<sup>−1</sup>). This work highlights interlayer engineering as a key strategy for optimizing MoS<sub>2</sub> catalysts in conversion-type batteries.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 26\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202502834\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202502834\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202502834","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂硫电池面临着多硫化物穿梭效应和缓慢的氧化还原动力学等挑战,导致硫的利用率较低,循环稳定性有限。本文提出了一种氧掺杂工程方法来实现MoS2 (E-MoS2)的无柱层间延伸,用于锂多硫化转化。E-MoS2具有层间距扩大(从0.63 nm增加到0.95 nm)、电导率提高、Mo d带中心优化等特点,这些特点共同提高了多硫化物转化效率。因此,E- mos2阴极在2℃(0.046%衰减/循环)下循环600次后的容量为638 mAh g-1,在实际条件下(12 mg cm-2 S负载,E/S = 4µL mg-1)的面积容量为12.0 mAh cm-2。这项工作强调了层间工程是优化转换型电池中MoS2催化剂的关键策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Oxygen-Doped MoS2 with Expanded Interlayer Spacing for Rapid and Stable Polysulfide Conversion

Oxygen-Doped MoS2 with Expanded Interlayer Spacing for Rapid and Stable Polysulfide Conversion

Oxygen-Doped MoS2 with Expanded Interlayer Spacing for Rapid and Stable Polysulfide Conversion

Oxygen-Doped MoS2 with Expanded Interlayer Spacing for Rapid and Stable Polysulfide Conversion

Lithium–sulfur batteries face challenges such as the polysulfide shuttle effect and sluggish redox kinetics, leading to poor sulfur utilization and limited cyclic stability. Herein, an oxygen-doped engineering approach is presented to achieve pillar-free interlayer extension of MoS2 (E-MoS2) for lithium polysulfide conversion. E-MoS2 features expanded interlayer spacing (from 0.63 to 0.95 nm), improved conductivity, and an optimized Mo d band center, which collectively enhances polysulfide conversion efficiency. Consequently, cathodes with E-MoS2 deliver a capacity of 638 mAh g−1 after 600 cycles at 2 C (0.046% decay/cycle) and an areal capacity of 12.0 mAh cm−2 under practical conditions (12 mg cm−2 S loading, E/S = 4 µL mg−1). This work highlights interlayer engineering as a key strategy for optimizing MoS2 catalysts in conversion-type batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信