利用气溶胶喷射打印技术实现钙钛矿薄膜光伏组件的单片互连

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Vitor Vlnieska, Severin Siegrist, Pedro O. Q. Ceres, Jakob Heier, Fan Fu, Yaroslav E. Romanyuk
{"title":"利用气溶胶喷射打印技术实现钙钛矿薄膜光伏组件的单片互连","authors":"Vitor Vlnieska,&nbsp;Severin Siegrist,&nbsp;Pedro O. Q. Ceres,&nbsp;Jakob Heier,&nbsp;Fan Fu,&nbsp;Yaroslav E. Romanyuk","doi":"10.1002/ente.202401793","DOIUrl":null,"url":null,"abstract":"<p>\nPerovskite thin-film photovoltaic (PV) modules consist of multiple cells connected in series to reduce resistive losses in the transparent electrode. Cell interconnection is typically achieved using techniques involving laser scribing and/or precise alignment during fabrication. For perovskite modules, this interconnection is implemented monolithically by integrating three laser scribing steps into the module fabrication process. Laser scribing provides high-resolution lines (≈100–200 μm wide), necessitating equally precise or finer techniques for interconnections. Aerosol jet printing emerges as a promising solution, offering resolutions as fine as 10 μm and enabling high-speed processing. This study demonstrates the fabrication of semi-transparent monolithic perovskite modules using a combination of laser scribing and aerosol jet printing. Five interconnected cells are successfully produced, with the laser scribing process requiring ≈2 min and aerosol jet printing interconnections completed in about 7 min. The resulting perovskite PV modules with aerosol jet-printed interconnects show comparable performance to those fabricated using evaporated interconnections. Key performance metrics included an open-circuit voltage (<i>V</i><sub>OC</sub>) of 4.91 V, short-circuit current density (<i>J</i><sub>SC</sub>) of 2.41 mA cm<sup>−2</sup>, fill factor (FF) of 44.56%, power conversion efficiency of 5.26%, and an effective area of 13.46 cm<sup>2</sup>. These results highlight the potential of aerosol jet printing as an efficient and precise approach for advancing perovskite module fabrication.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 4","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ente.202401793","citationCount":"0","resultStr":"{\"title\":\"Monolithic Interconnection of Thin-Film Perovskite Photovoltaic Modules Using Aerosol Jet Printing\",\"authors\":\"Vitor Vlnieska,&nbsp;Severin Siegrist,&nbsp;Pedro O. Q. Ceres,&nbsp;Jakob Heier,&nbsp;Fan Fu,&nbsp;Yaroslav E. Romanyuk\",\"doi\":\"10.1002/ente.202401793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\nPerovskite thin-film photovoltaic (PV) modules consist of multiple cells connected in series to reduce resistive losses in the transparent electrode. Cell interconnection is typically achieved using techniques involving laser scribing and/or precise alignment during fabrication. For perovskite modules, this interconnection is implemented monolithically by integrating three laser scribing steps into the module fabrication process. Laser scribing provides high-resolution lines (≈100–200 μm wide), necessitating equally precise or finer techniques for interconnections. Aerosol jet printing emerges as a promising solution, offering resolutions as fine as 10 μm and enabling high-speed processing. This study demonstrates the fabrication of semi-transparent monolithic perovskite modules using a combination of laser scribing and aerosol jet printing. Five interconnected cells are successfully produced, with the laser scribing process requiring ≈2 min and aerosol jet printing interconnections completed in about 7 min. The resulting perovskite PV modules with aerosol jet-printed interconnects show comparable performance to those fabricated using evaporated interconnections. Key performance metrics included an open-circuit voltage (<i>V</i><sub>OC</sub>) of 4.91 V, short-circuit current density (<i>J</i><sub>SC</sub>) of 2.41 mA cm<sup>−2</sup>, fill factor (FF) of 44.56%, power conversion efficiency of 5.26%, and an effective area of 13.46 cm<sup>2</sup>. These results highlight the potential of aerosol jet printing as an efficient and precise approach for advancing perovskite module fabrication.</p>\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":\"13 4\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ente.202401793\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401793\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401793","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿薄膜光伏(PV)组件由串联连接的多个电池组成,以减少透明电极中的电阻损耗。在制造过程中,通常使用激光划线和/或精确对准技术来实现单元互连。对于钙钛矿模块,这种互连是通过将三个激光刻划步骤集成到模块制造过程中来实现的。激光刻划提供高分辨率的线条(≈100-200 μm宽),需要同样精确或更精细的互连技术。气溶胶喷射打印成为一种很有前途的解决方案,其分辨率可达10 μm,并可实现高速加工。本研究展示了采用激光划线和气溶胶喷射打印相结合的方法制造半透明单片钙钛矿模块。成功地制作了5个互连单元,激光刻划过程需要≈2分钟,气溶胶喷射打印在7分钟左右完成互连。由此产生的具有气溶胶喷射打印互连的钙钛矿光伏组件显示出与使用蒸发互连制造的组件相当的性能。关键性能指标包括开路电压(VOC)为4.91 V,短路电流密度(JSC)为2.41 mA cm−2,填充系数(FF)为44.56%,功率转换效率为5.26%,有效面积为13.46 cm2。这些结果突出了气溶胶喷射打印作为一种有效和精确的方法来推进钙钛矿组件制造的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Monolithic Interconnection of Thin-Film Perovskite Photovoltaic Modules Using Aerosol Jet Printing

Monolithic Interconnection of Thin-Film Perovskite Photovoltaic Modules Using Aerosol Jet Printing

Perovskite thin-film photovoltaic (PV) modules consist of multiple cells connected in series to reduce resistive losses in the transparent electrode. Cell interconnection is typically achieved using techniques involving laser scribing and/or precise alignment during fabrication. For perovskite modules, this interconnection is implemented monolithically by integrating three laser scribing steps into the module fabrication process. Laser scribing provides high-resolution lines (≈100–200 μm wide), necessitating equally precise or finer techniques for interconnections. Aerosol jet printing emerges as a promising solution, offering resolutions as fine as 10 μm and enabling high-speed processing. This study demonstrates the fabrication of semi-transparent monolithic perovskite modules using a combination of laser scribing and aerosol jet printing. Five interconnected cells are successfully produced, with the laser scribing process requiring ≈2 min and aerosol jet printing interconnections completed in about 7 min. The resulting perovskite PV modules with aerosol jet-printed interconnects show comparable performance to those fabricated using evaporated interconnections. Key performance metrics included an open-circuit voltage (VOC) of 4.91 V, short-circuit current density (JSC) of 2.41 mA cm−2, fill factor (FF) of 44.56%, power conversion efficiency of 5.26%, and an effective area of 13.46 cm2. These results highlight the potential of aerosol jet printing as an efficient and precise approach for advancing perovskite module fabrication.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信