多孔碳包覆掺铁MnO作为高性能锌离子电池阴极

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Guangxing Pan, Zhenyuan Wang, Jichuan Zhang, Miaomiao Cao, Ling Zhang, Jiaheng Zhang
{"title":"多孔碳包覆掺铁MnO作为高性能锌离子电池阴极","authors":"Guangxing Pan,&nbsp;Zhenyuan Wang,&nbsp;Jichuan Zhang,&nbsp;Miaomiao Cao,&nbsp;Ling Zhang,&nbsp;Jiaheng Zhang","doi":"10.1002/ente.202401690","DOIUrl":null,"url":null,"abstract":"<p>Ion doping is a feasible approach to enhance the stability and cycling performance of manganese-based materials. However, limited research has been conducted on Fe-doped manganese-based oxides. The present study represents the first successful synthesis of a composite material, namely porous carbon-coated Fe-doped MnO (Fe-MnO/C), achieved through annealing FeMn-based metal-organic frameworks. The electrochemical performance is enhanced by Fe doping, as the presence of Mn<span></span>O<span></span>Fe bonds facilitates charge transfer and mitigates structural collapse, thereby resulting in improved rate capability and cycling stability. The Fe-MnO/C-3 cathode achieves a maximum energy density of 249.6 Wh kg<sup>−1</sup> at a power density of 130.6 W kg<sup>−1</sup> and demonstrates a high specific capacity of 134 mAh g<sup>−1</sup> even after undergoing 800 cycles at 1.0 A g<sup>−1</sup>. The study presents a cost-effective and convenient approach to fabricate a high-performance cathode for aqueous zinc-ion batteries.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 4","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porous Carbon-Coated Fe-Doped MnO as High-Performance Cathode for Aqueous Zinc Ion Batteries\",\"authors\":\"Guangxing Pan,&nbsp;Zhenyuan Wang,&nbsp;Jichuan Zhang,&nbsp;Miaomiao Cao,&nbsp;Ling Zhang,&nbsp;Jiaheng Zhang\",\"doi\":\"10.1002/ente.202401690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ion doping is a feasible approach to enhance the stability and cycling performance of manganese-based materials. However, limited research has been conducted on Fe-doped manganese-based oxides. The present study represents the first successful synthesis of a composite material, namely porous carbon-coated Fe-doped MnO (Fe-MnO/C), achieved through annealing FeMn-based metal-organic frameworks. The electrochemical performance is enhanced by Fe doping, as the presence of Mn<span></span>O<span></span>Fe bonds facilitates charge transfer and mitigates structural collapse, thereby resulting in improved rate capability and cycling stability. The Fe-MnO/C-3 cathode achieves a maximum energy density of 249.6 Wh kg<sup>−1</sup> at a power density of 130.6 W kg<sup>−1</sup> and demonstrates a high specific capacity of 134 mAh g<sup>−1</sup> even after undergoing 800 cycles at 1.0 A g<sup>−1</sup>. The study presents a cost-effective and convenient approach to fabricate a high-performance cathode for aqueous zinc-ion batteries.</p>\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":\"13 4\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401690\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401690","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

离子掺杂是提高锰基材料稳定性和循环性能的可行途径。然而,对铁掺杂锰基氧化物的研究有限。本研究首次成功合成了一种复合材料,即多孔碳包覆铁掺杂MnO (Fe-MnO/C),该材料是通过退火femn基金属有机骨架实现的。Fe掺杂提高了电化学性能,因为Mn - O - Fe键的存在促进了电荷转移,减轻了结构崩溃,从而提高了速率能力和循环稳定性。在功率密度为130.6 W kg - 1时,Fe-MnO/C-3阴极的最大能量密度为249.6 Wh kg - 1,在1.0 a g - 1下进行800次循环后,比容量仍高达134 mAh g - 1。本研究为制备高性能锌离子电池阴极提供了一种经济、方便的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Porous Carbon-Coated Fe-Doped MnO as High-Performance Cathode for Aqueous Zinc Ion Batteries

Porous Carbon-Coated Fe-Doped MnO as High-Performance Cathode for Aqueous Zinc Ion Batteries

Ion doping is a feasible approach to enhance the stability and cycling performance of manganese-based materials. However, limited research has been conducted on Fe-doped manganese-based oxides. The present study represents the first successful synthesis of a composite material, namely porous carbon-coated Fe-doped MnO (Fe-MnO/C), achieved through annealing FeMn-based metal-organic frameworks. The electrochemical performance is enhanced by Fe doping, as the presence of MnOFe bonds facilitates charge transfer and mitigates structural collapse, thereby resulting in improved rate capability and cycling stability. The Fe-MnO/C-3 cathode achieves a maximum energy density of 249.6 Wh kg−1 at a power density of 130.6 W kg−1 and demonstrates a high specific capacity of 134 mAh g−1 even after undergoing 800 cycles at 1.0 A g−1. The study presents a cost-effective and convenient approach to fabricate a high-performance cathode for aqueous zinc-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信