Hazel Deniz Toktay, Hanbing Ai, Ahmad Alvandi, Kejia Su, Jinlei Li
{"title":"MTAHG和mthhg:修正的重力数据解释方法","authors":"Hazel Deniz Toktay, Hanbing Ai, Ahmad Alvandi, Kejia Su, Jinlei Li","doi":"10.1029/2024EA003900","DOIUrl":null,"url":null,"abstract":"<p>Gravity anomaly maps often contain spatially overlapping signatures from numerous sources, each with varying shapes, depths, and density contrasts. Locating these signatures using edge detection techniques is crucial for geological structural interpretation and imaging of horizontal boundaries. This paper proposes two effective edge detection tools: one combining the balanced total horizontal gradient (BHG), and the hyperbolic tangent function, abbreviated as “MTBHG”; and the other combining the tilt angle of the total horizontal gradient (TAHG) and the hyperbolic tangent function, abbreviated as “MTAHG.” Additionally, the Modified Non-Local Means (MNLM) filter was applied to suppress possible noise effects amplified by the gradient calculation process. Synthetic tests validated that the MTAHG and MTBHG detectors outperform other representative detectors. Two high-resolution gravity data sets from the Western Carpathians in Slovakia and the Witwatersrand Basin in South Africa were used to test the applicability of the modified methods. Results show that the modified detectors achieve superior edge delineation and avoid creating spurious anomalies or artifacts even in the presence of unwanted noise interference. Furthermore, by eliminating false tilt-depth (TD) solutions via the edge detection results, we enhance the accuracy of depth estimates and facilitate the credible identification of both horizontal and vertical structure distributions.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003900","citationCount":"0","resultStr":"{\"title\":\"MTAHG and MTBHG: Modified Approaches for Interpreting Gravity Data\",\"authors\":\"Hazel Deniz Toktay, Hanbing Ai, Ahmad Alvandi, Kejia Su, Jinlei Li\",\"doi\":\"10.1029/2024EA003900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gravity anomaly maps often contain spatially overlapping signatures from numerous sources, each with varying shapes, depths, and density contrasts. Locating these signatures using edge detection techniques is crucial for geological structural interpretation and imaging of horizontal boundaries. This paper proposes two effective edge detection tools: one combining the balanced total horizontal gradient (BHG), and the hyperbolic tangent function, abbreviated as “MTBHG”; and the other combining the tilt angle of the total horizontal gradient (TAHG) and the hyperbolic tangent function, abbreviated as “MTAHG.” Additionally, the Modified Non-Local Means (MNLM) filter was applied to suppress possible noise effects amplified by the gradient calculation process. Synthetic tests validated that the MTAHG and MTBHG detectors outperform other representative detectors. Two high-resolution gravity data sets from the Western Carpathians in Slovakia and the Witwatersrand Basin in South Africa were used to test the applicability of the modified methods. Results show that the modified detectors achieve superior edge delineation and avoid creating spurious anomalies or artifacts even in the presence of unwanted noise interference. Furthermore, by eliminating false tilt-depth (TD) solutions via the edge detection results, we enhance the accuracy of depth estimates and facilitate the credible identification of both horizontal and vertical structure distributions.</p>\",\"PeriodicalId\":54286,\"journal\":{\"name\":\"Earth and Space Science\",\"volume\":\"12 4\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003900\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003900\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003900","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
MTAHG and MTBHG: Modified Approaches for Interpreting Gravity Data
Gravity anomaly maps often contain spatially overlapping signatures from numerous sources, each with varying shapes, depths, and density contrasts. Locating these signatures using edge detection techniques is crucial for geological structural interpretation and imaging of horizontal boundaries. This paper proposes two effective edge detection tools: one combining the balanced total horizontal gradient (BHG), and the hyperbolic tangent function, abbreviated as “MTBHG”; and the other combining the tilt angle of the total horizontal gradient (TAHG) and the hyperbolic tangent function, abbreviated as “MTAHG.” Additionally, the Modified Non-Local Means (MNLM) filter was applied to suppress possible noise effects amplified by the gradient calculation process. Synthetic tests validated that the MTAHG and MTBHG detectors outperform other representative detectors. Two high-resolution gravity data sets from the Western Carpathians in Slovakia and the Witwatersrand Basin in South Africa were used to test the applicability of the modified methods. Results show that the modified detectors achieve superior edge delineation and avoid creating spurious anomalies or artifacts even in the presence of unwanted noise interference. Furthermore, by eliminating false tilt-depth (TD) solutions via the edge detection results, we enhance the accuracy of depth estimates and facilitate the credible identification of both horizontal and vertical structure distributions.
期刊介绍:
Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.