IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Jingbo Liu, Yanxia Liu, Zhenzhen Guo, Cheng Qian, Fan Liu, Fengtao Chai, Chongchong Zhao, Feng Huo
{"title":"Preparation and Lithium Storage Performance of Si/C Composites as Anode Materials for Lithium-Ion Batteries: A Review","authors":"Jingbo Liu,&nbsp;Yanxia Liu,&nbsp;Zhenzhen Guo,&nbsp;Cheng Qian,&nbsp;Fan Liu,&nbsp;Fengtao Chai,&nbsp;Chongchong Zhao,&nbsp;Feng Huo","doi":"10.1002/ente.202401313","DOIUrl":null,"url":null,"abstract":"<p>\nSilicon offers a theoretical specific capacity of up to 4200 mAh g<sup>−1</sup>, positioning it as one of the most promising materials for next-generation lithium-ion batteries (LIBs). However, during lithium insertion and deinsertion, Si undergoes significant volume expansion, leading to rapid capacity degradation, which has limited its application as an anode material in LIBs. To address this issue, coupling Si with carbon enables the combination of the high lithiation capacity of Si with the excellent mechanical strength and electrical conductivity of carbon. This synergy makes silicon/carbon composites (Si/C) ideal candidates for LIB anodes. In this review, recent advancements in Si/C composite materials for LIBs are categorized based on synthesis methods and design principles. The review also summarizes the morphological characteristics and electrochemical performance of these materials. Additionally, other factors influencing the performance of Si/C anodes are discussed, and future development prospects for Si/C anodes are briefly explored.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 4","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401313","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

硅的理论比容量高达 4200 mAh g-1,是下一代锂离子电池(LIB)中最有前途的材料之一。然而,在锂插入和脱出的过程中,硅会发生显著的体积膨胀,导致容量迅速下降,这限制了它作为锂离子电池负极材料的应用。为解决这一问题,将硅与碳耦合可将硅的高锂化能力与碳的出色机械强度和导电性结合起来。这种协同作用使硅/碳复合材料(Si/C)成为锂离子电池阳极的理想候选材料。本综述根据合成方法和设计原理对用于锂离子电池的硅/碳复合材料的最新进展进行了分类。综述还总结了这些材料的形态特征和电化学性能。此外,还讨论了影响 Si/C 阳极性能的其他因素,并简要探讨了 Si/C 阳极的未来发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Preparation and Lithium Storage Performance of Si/C Composites as Anode Materials for Lithium-Ion Batteries: A Review

Preparation and Lithium Storage Performance of Si/C Composites as Anode Materials for Lithium-Ion Batteries: A Review

Silicon offers a theoretical specific capacity of up to 4200 mAh g−1, positioning it as one of the most promising materials for next-generation lithium-ion batteries (LIBs). However, during lithium insertion and deinsertion, Si undergoes significant volume expansion, leading to rapid capacity degradation, which has limited its application as an anode material in LIBs. To address this issue, coupling Si with carbon enables the combination of the high lithiation capacity of Si with the excellent mechanical strength and electrical conductivity of carbon. This synergy makes silicon/carbon composites (Si/C) ideal candidates for LIB anodes. In this review, recent advancements in Si/C composite materials for LIBs are categorized based on synthesis methods and design principles. The review also summarizes the morphological characteristics and electrochemical performance of these materials. Additionally, other factors influencing the performance of Si/C anodes are discussed, and future development prospects for Si/C anodes are briefly explored.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信