Yasushi Yabuki, Karin Hori, Zizhen Zhang, Kazuya Matsuo, Kenta Kudo, Shingo Usuki, Vinicius M. Gadotti, Lina Chen, Shinya Ueno, Shuji Chiba, Kohji Fukunaga, Gerald W. Zamponi, Norifumi Shioda
{"title":"Cav3.1 T 型钙通道是内侧前额叶皮层 GABA 能兴奋的通道,它导致小鼠的慢性心理压力反应","authors":"Yasushi Yabuki, Karin Hori, Zizhen Zhang, Kazuya Matsuo, Kenta Kudo, Shingo Usuki, Vinicius M. Gadotti, Lina Chen, Shinya Ueno, Shuji Chiba, Kohji Fukunaga, Gerald W. Zamponi, Norifumi Shioda","doi":"10.1111/apha.70043","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>The molecular mechanisms of chronic stress-induced psychiatric disorders, including depression, remain unknown. The current study aimed to assess the role of Cav3.1 T-type calcium channels as a gateway for the chronic stress-induced activation of parvalbumin (PV)-positive gamma-aminobutyric acidergic (GABAergic) neurons in the medial prefrontal cortex (mPFC) of mice.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>The function of the Cav3.1 T-type calcium channel in the mouse mPFC following chronic stress was investigated using behavioral tests, electrophysiological analyses, transcriptome analyses, and optogenetic approaches.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Cav3.1-knockout (Cav3.1<sup>−/−</sup>) mice were resistant to chronic stress-induced depressive-like behaviors induced by repeated forced-swimming test or tail-suspension test. Immunohistochemical analysis revealed that Cav3.1 was predominantly localized in PV-positive GABAergic neurons in the mPFC. Based on transcriptomic and electrophysiological analyses, the excitatory–inhibitory (E–I) balance was disrupted by the chronic stress-induced activation of PV-positive GABAergic neurons in the mPFC of wild-type (WT) mice, but not in that of Cav3.1<sup>−/−</sup> mice. Optogenetic control of PV-positive GABAergic neurons in the mPFC revealed that they played a pivotal role in depressive-like behaviors. The administration of TTA-A2, a selective T-type calcium channel antagonist, reduced chronic stress-induced depressive-like behaviors.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The Cav3.1 T-type calcium channel acts as a gateway for the activation of GABAergic neurons in the mPFC of mice, thereby eliciting chronic psychobiological stress responses.</p>\n </section>\n </div>","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"241 5","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cav3.1 T-Type Calcium Channel Acts as a Gateway for GABAergic Excitation in the Medial Prefrontal Cortex That Leads to Chronic Psychological Stress Responses in Mice\",\"authors\":\"Yasushi Yabuki, Karin Hori, Zizhen Zhang, Kazuya Matsuo, Kenta Kudo, Shingo Usuki, Vinicius M. Gadotti, Lina Chen, Shinya Ueno, Shuji Chiba, Kohji Fukunaga, Gerald W. Zamponi, Norifumi Shioda\",\"doi\":\"10.1111/apha.70043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>The molecular mechanisms of chronic stress-induced psychiatric disorders, including depression, remain unknown. The current study aimed to assess the role of Cav3.1 T-type calcium channels as a gateway for the chronic stress-induced activation of parvalbumin (PV)-positive gamma-aminobutyric acidergic (GABAergic) neurons in the medial prefrontal cortex (mPFC) of mice.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>The function of the Cav3.1 T-type calcium channel in the mouse mPFC following chronic stress was investigated using behavioral tests, electrophysiological analyses, transcriptome analyses, and optogenetic approaches.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Cav3.1-knockout (Cav3.1<sup>−/−</sup>) mice were resistant to chronic stress-induced depressive-like behaviors induced by repeated forced-swimming test or tail-suspension test. Immunohistochemical analysis revealed that Cav3.1 was predominantly localized in PV-positive GABAergic neurons in the mPFC. Based on transcriptomic and electrophysiological analyses, the excitatory–inhibitory (E–I) balance was disrupted by the chronic stress-induced activation of PV-positive GABAergic neurons in the mPFC of wild-type (WT) mice, but not in that of Cav3.1<sup>−/−</sup> mice. Optogenetic control of PV-positive GABAergic neurons in the mPFC revealed that they played a pivotal role in depressive-like behaviors. The administration of TTA-A2, a selective T-type calcium channel antagonist, reduced chronic stress-induced depressive-like behaviors.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>The Cav3.1 T-type calcium channel acts as a gateway for the activation of GABAergic neurons in the mPFC of mice, thereby eliciting chronic psychobiological stress responses.</p>\\n </section>\\n </div>\",\"PeriodicalId\":107,\"journal\":{\"name\":\"Acta Physiologica\",\"volume\":\"241 5\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physiologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/apha.70043\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologica","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/apha.70043","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Cav3.1 T-Type Calcium Channel Acts as a Gateway for GABAergic Excitation in the Medial Prefrontal Cortex That Leads to Chronic Psychological Stress Responses in Mice
Aim
The molecular mechanisms of chronic stress-induced psychiatric disorders, including depression, remain unknown. The current study aimed to assess the role of Cav3.1 T-type calcium channels as a gateway for the chronic stress-induced activation of parvalbumin (PV)-positive gamma-aminobutyric acidergic (GABAergic) neurons in the medial prefrontal cortex (mPFC) of mice.
Methods
The function of the Cav3.1 T-type calcium channel in the mouse mPFC following chronic stress was investigated using behavioral tests, electrophysiological analyses, transcriptome analyses, and optogenetic approaches.
Results
Cav3.1-knockout (Cav3.1−/−) mice were resistant to chronic stress-induced depressive-like behaviors induced by repeated forced-swimming test or tail-suspension test. Immunohistochemical analysis revealed that Cav3.1 was predominantly localized in PV-positive GABAergic neurons in the mPFC. Based on transcriptomic and electrophysiological analyses, the excitatory–inhibitory (E–I) balance was disrupted by the chronic stress-induced activation of PV-positive GABAergic neurons in the mPFC of wild-type (WT) mice, but not in that of Cav3.1−/− mice. Optogenetic control of PV-positive GABAergic neurons in the mPFC revealed that they played a pivotal role in depressive-like behaviors. The administration of TTA-A2, a selective T-type calcium channel antagonist, reduced chronic stress-induced depressive-like behaviors.
Conclusion
The Cav3.1 T-type calcium channel acts as a gateway for the activation of GABAergic neurons in the mPFC of mice, thereby eliciting chronic psychobiological stress responses.
期刊介绍:
Acta Physiologica is an important forum for the publication of high quality original research in physiology and related areas by authors from all over the world. Acta Physiologica is a leading journal in human/translational physiology while promoting all aspects of the science of physiology. The journal publishes full length original articles on important new observations as well as reviews and commentaries.