Dong-Yong Li, Long Chen, Hai-Ou Gu, Guo-Chao Sun, Jiang-Hong Deng, Sheng-Yao Yu, Yan-Yan Zhao, Yang Zhang, Nan Wang, Xiao-Qiang Guo, Zhi-Shun Zhang, Kai-Xin Feng, Rong-Bin Zhang, San-Zhong Li
{"title":"MC-ICPMS中Fe-Zn同位素精密度的集成元素掺杂和标准样品包封","authors":"Dong-Yong Li, Long Chen, Hai-Ou Gu, Guo-Chao Sun, Jiang-Hong Deng, Sheng-Yao Yu, Yan-Yan Zhao, Yang Zhang, Nan Wang, Xiao-Qiang Guo, Zhi-Shun Zhang, Kai-Xin Feng, Rong-Bin Zhang, San-Zhong Li","doi":"10.1002/rcm.10041","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Standard-sample bracketing (SSB) and element doping are widely used for correcting instrumental mass bias in Fe–Zn isotope analysis using multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). However, the combined effects of analyte concentration and spike-analyte ratios on measurement accuracy remain underexplored.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We developed an improved Fe–Zn isotope analysis method that combines SSB with element doping to mitigate concentration effects. By systematically evaluating Ni/Fe and Cu/Zn ratios (0.1–2.1) and analyte concentrations ranging from 0.1 to 2.0 times the concentration of the bracketing standards, we assessed their influence on isotope precision and accuracy.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Our findings indicate that, when low-concentration isotopes are accurately quantified, variations in Ni/Fe and Cu/Zn ratios exert minimal influence on measurement precision. Compared to conventional SSB, the combined approach reduces concentration matching constraints by 30%–50%, broadening the acceptable Fe and Zn concentration ranges. Validation using 10 geological reference materials, including 6 from the United States Geological Survey and 4 from the Geological Survey of Japan, confirmed its reliability, with isotopic values aligning with published data within analytical uncertainty.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The combined approach enhances measurement precision and applicability to diverse geological samples, offering a robust method for Fe–Zn isotope studies.</p>\n </section>\n </div>","PeriodicalId":225,"journal":{"name":"Rapid Communications in Mass Spectrometry","volume":"39 13","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Element Doping and Standard-Sample Bracketing for Enhanced Fe–Zn Isotope Precision in MC-ICPMS\",\"authors\":\"Dong-Yong Li, Long Chen, Hai-Ou Gu, Guo-Chao Sun, Jiang-Hong Deng, Sheng-Yao Yu, Yan-Yan Zhao, Yang Zhang, Nan Wang, Xiao-Qiang Guo, Zhi-Shun Zhang, Kai-Xin Feng, Rong-Bin Zhang, San-Zhong Li\",\"doi\":\"10.1002/rcm.10041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Standard-sample bracketing (SSB) and element doping are widely used for correcting instrumental mass bias in Fe–Zn isotope analysis using multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). However, the combined effects of analyte concentration and spike-analyte ratios on measurement accuracy remain underexplored.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We developed an improved Fe–Zn isotope analysis method that combines SSB with element doping to mitigate concentration effects. By systematically evaluating Ni/Fe and Cu/Zn ratios (0.1–2.1) and analyte concentrations ranging from 0.1 to 2.0 times the concentration of the bracketing standards, we assessed their influence on isotope precision and accuracy.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Our findings indicate that, when low-concentration isotopes are accurately quantified, variations in Ni/Fe and Cu/Zn ratios exert minimal influence on measurement precision. Compared to conventional SSB, the combined approach reduces concentration matching constraints by 30%–50%, broadening the acceptable Fe and Zn concentration ranges. Validation using 10 geological reference materials, including 6 from the United States Geological Survey and 4 from the Geological Survey of Japan, confirmed its reliability, with isotopic values aligning with published data within analytical uncertainty.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>The combined approach enhances measurement precision and applicability to diverse geological samples, offering a robust method for Fe–Zn isotope studies.</p>\\n </section>\\n </div>\",\"PeriodicalId\":225,\"journal\":{\"name\":\"Rapid Communications in Mass Spectrometry\",\"volume\":\"39 13\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rapid Communications in Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rcm.10041\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Communications in Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rcm.10041","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Integrated Element Doping and Standard-Sample Bracketing for Enhanced Fe–Zn Isotope Precision in MC-ICPMS
Background
Standard-sample bracketing (SSB) and element doping are widely used for correcting instrumental mass bias in Fe–Zn isotope analysis using multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). However, the combined effects of analyte concentration and spike-analyte ratios on measurement accuracy remain underexplored.
Methods
We developed an improved Fe–Zn isotope analysis method that combines SSB with element doping to mitigate concentration effects. By systematically evaluating Ni/Fe and Cu/Zn ratios (0.1–2.1) and analyte concentrations ranging from 0.1 to 2.0 times the concentration of the bracketing standards, we assessed their influence on isotope precision and accuracy.
Results
Our findings indicate that, when low-concentration isotopes are accurately quantified, variations in Ni/Fe and Cu/Zn ratios exert minimal influence on measurement precision. Compared to conventional SSB, the combined approach reduces concentration matching constraints by 30%–50%, broadening the acceptable Fe and Zn concentration ranges. Validation using 10 geological reference materials, including 6 from the United States Geological Survey and 4 from the Geological Survey of Japan, confirmed its reliability, with isotopic values aligning with published data within analytical uncertainty.
Conclusion
The combined approach enhances measurement precision and applicability to diverse geological samples, offering a robust method for Fe–Zn isotope studies.
期刊介绍:
Rapid Communications in Mass Spectrometry is a journal whose aim is the rapid publication of original research results and ideas on all aspects of the science of gas-phase ions; it covers all the associated scientific disciplines. There is no formal limit on paper length ("rapid" is not synonymous with "brief"), but papers should be of a length that is commensurate with the importance and complexity of the results being reported. Contributions may be theoretical or practical in nature; they may deal with methods, techniques and applications, or with the interpretation of results; they may cover any area in science that depends directly on measurements made upon gaseous ions or that is associated with such measurements.