{"title":"利用高维映射进行有效的JPEG隐写分析","authors":"Meng Xu, Xiangyang Luo","doi":"10.1155/int/9674462","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Steganography is a critical information-hiding technique widely used for the covert transmission of secret information on social media. In contrast, steganalysis plays a key role in ensuring information security. Although various effective steganalysis algorithms have been proposed, existing studies typically treat color images as three independent channels and do not fully consider robust features suitable for JPEG images. To address this limitation, we propose a robust steganalysis algorithm based on high-dimensional mapping. By analyzing the changes in color images during the JPEG compression and decompression processes, we observe that the embedding of secret information causes shifts in the JPEG coefficients, which subsequently affects feature representation during decompression. Based on this observation, our method captures steganographic traces by utilizing the transformation errors produced during decompression. Additionally, due to the imbalance between luminance and chrominance, the feature weights of each channel are uneven. To ensure balanced analysis across the three channels, we adjust the distribution differences of each channel through high-dimensional mapping, thereby reducing intraclass feature variations. Experimental results demonstrate that the proposed method outperforms existing approaches in most cases.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/9674462","citationCount":"0","resultStr":"{\"title\":\"Leveraging High-Dimensional Mapping for Effective JPEG Steganalysis\",\"authors\":\"Meng Xu, Xiangyang Luo\",\"doi\":\"10.1155/int/9674462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Steganography is a critical information-hiding technique widely used for the covert transmission of secret information on social media. In contrast, steganalysis plays a key role in ensuring information security. Although various effective steganalysis algorithms have been proposed, existing studies typically treat color images as three independent channels and do not fully consider robust features suitable for JPEG images. To address this limitation, we propose a robust steganalysis algorithm based on high-dimensional mapping. By analyzing the changes in color images during the JPEG compression and decompression processes, we observe that the embedding of secret information causes shifts in the JPEG coefficients, which subsequently affects feature representation during decompression. Based on this observation, our method captures steganographic traces by utilizing the transformation errors produced during decompression. Additionally, due to the imbalance between luminance and chrominance, the feature weights of each channel are uneven. To ensure balanced analysis across the three channels, we adjust the distribution differences of each channel through high-dimensional mapping, thereby reducing intraclass feature variations. Experimental results demonstrate that the proposed method outperforms existing approaches in most cases.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/9674462\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/int/9674462\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/9674462","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Leveraging High-Dimensional Mapping for Effective JPEG Steganalysis
Steganography is a critical information-hiding technique widely used for the covert transmission of secret information on social media. In contrast, steganalysis plays a key role in ensuring information security. Although various effective steganalysis algorithms have been proposed, existing studies typically treat color images as three independent channels and do not fully consider robust features suitable for JPEG images. To address this limitation, we propose a robust steganalysis algorithm based on high-dimensional mapping. By analyzing the changes in color images during the JPEG compression and decompression processes, we observe that the embedding of secret information causes shifts in the JPEG coefficients, which subsequently affects feature representation during decompression. Based on this observation, our method captures steganographic traces by utilizing the transformation errors produced during decompression. Additionally, due to the imbalance between luminance and chrominance, the feature weights of each channel are uneven. To ensure balanced analysis across the three channels, we adjust the distribution differences of each channel through high-dimensional mapping, thereby reducing intraclass feature variations. Experimental results demonstrate that the proposed method outperforms existing approaches in most cases.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.