通过压力提高 Janus MoSSe 单层的热电性能

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Anisha, Ramesh Kumar, Mukhtiyar Singh, Sunita Srivastava, Tankeshwar Kumar
{"title":"通过压力提高 Janus MoSSe 单层的热电性能","authors":"Anisha,&nbsp;Ramesh Kumar,&nbsp;Mukhtiyar Singh,&nbsp;Sunita Srivastava,&nbsp;Tankeshwar Kumar","doi":"10.1140/epjp/s13360-025-06180-9","DOIUrl":null,"url":null,"abstract":"<div><p>By combining first-principles computations with the semi-classical Boltzmann transport equations, a systematic investigation of the structural, electronic and thermoelectric properties of the MoSSe Janus monolayer is conducted under pressure. The monolayer semiconducting nature is indicated by the band gap value (<i>E</i><sub>g</sub> = 1.5 eV), which may be further tuned from 0.56 to 1.67 eV by applying pressure in the -3GPa to + 2GPa range. The figure of merit (ZT) for p (n)-type carriers at 300 K in the absence of pressure is computed to be 0.67 and 0.59. The power factor has enhanced from 16.59 (27.21) Wm<sup>−1</sup> K<sup>−2</sup> to 227.15 (159.50) Wm<sup>−1</sup> K<sup>−2</sup> for <i>n</i> (<i>p</i>)-type carriers by applying an external pressure of -1 GPa to the Janus monolayer. For <i>n</i> (<i>p</i>) -type doping at 300 K, the corresponding maximum value of ZT is 0.82 (0.78), which is 39% (14%) greater for <i>n</i> (<i>p</i>) type than for pure MoSSe Janus monolayer. When the pressure is increased to + 3 GPa, the value of ZT for n-type doping is further increased to 0.73, which is 24% higher than the value for pure monolayer. It is possible for a pure Janus monolayer to undergo n-type doping under pressure due to the shifting of the conduction band minima and valence band maxima. This study presents an attractive approach for manipulating the material thermoelectric properties through external pressure application.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the thermoelectric performance of Janus MoSSe monolayer via pressure\",\"authors\":\"Anisha,&nbsp;Ramesh Kumar,&nbsp;Mukhtiyar Singh,&nbsp;Sunita Srivastava,&nbsp;Tankeshwar Kumar\",\"doi\":\"10.1140/epjp/s13360-025-06180-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By combining first-principles computations with the semi-classical Boltzmann transport equations, a systematic investigation of the structural, electronic and thermoelectric properties of the MoSSe Janus monolayer is conducted under pressure. The monolayer semiconducting nature is indicated by the band gap value (<i>E</i><sub>g</sub> = 1.5 eV), which may be further tuned from 0.56 to 1.67 eV by applying pressure in the -3GPa to + 2GPa range. The figure of merit (ZT) for p (n)-type carriers at 300 K in the absence of pressure is computed to be 0.67 and 0.59. The power factor has enhanced from 16.59 (27.21) Wm<sup>−1</sup> K<sup>−2</sup> to 227.15 (159.50) Wm<sup>−1</sup> K<sup>−2</sup> for <i>n</i> (<i>p</i>)-type carriers by applying an external pressure of -1 GPa to the Janus monolayer. For <i>n</i> (<i>p</i>) -type doping at 300 K, the corresponding maximum value of ZT is 0.82 (0.78), which is 39% (14%) greater for <i>n</i> (<i>p</i>) type than for pure MoSSe Janus monolayer. When the pressure is increased to + 3 GPa, the value of ZT for n-type doping is further increased to 0.73, which is 24% higher than the value for pure monolayer. It is possible for a pure Janus monolayer to undergo n-type doping under pressure due to the shifting of the conduction band minima and valence band maxima. This study presents an attractive approach for manipulating the material thermoelectric properties through external pressure application.</p></div>\",\"PeriodicalId\":792,\"journal\":{\"name\":\"The European Physical Journal Plus\",\"volume\":\"140 4\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Plus\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjp/s13360-025-06180-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06180-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过将第一性原理计算与半经典玻尔兹曼输运方程相结合,系统地研究了MoSSe Janus单层在压力下的结构、电子和热电性质。带隙值(Eg = 1.5 eV)表明了单层的半导体性质,通过在-3GPa到+ 2GPa范围内施加压力,该带隙值可以进一步从0.56调整到1.67 eV。在没有压力的情况下,p (n)型载流子在300 K时的性能值(ZT)计算为0.67和0.59。通过对Janus单层施加-1 GPa的外部压力,n (p)型载流子的功率因数从16.59 (27.21)Wm−1 K−2提高到227.15 (159.50)Wm−1 K−2。在300 K下,n (p)型掺杂的ZT最大值为0.82(0.78),比纯双面MoSSe单层高39%(14%)。当压力增加到+ 3 GPa时,n型掺杂的ZT值进一步增加到0.73,比纯单层的ZT值高24%。由于导带最小值和价带最大值的移动,纯Janus单层在压力下有可能发生n型掺杂。本研究提出了一种通过施加外部压力来控制材料热电性能的有吸引力的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the thermoelectric performance of Janus MoSSe monolayer via pressure

By combining first-principles computations with the semi-classical Boltzmann transport equations, a systematic investigation of the structural, electronic and thermoelectric properties of the MoSSe Janus monolayer is conducted under pressure. The monolayer semiconducting nature is indicated by the band gap value (Eg = 1.5 eV), which may be further tuned from 0.56 to 1.67 eV by applying pressure in the -3GPa to + 2GPa range. The figure of merit (ZT) for p (n)-type carriers at 300 K in the absence of pressure is computed to be 0.67 and 0.59. The power factor has enhanced from 16.59 (27.21) Wm−1 K−2 to 227.15 (159.50) Wm−1 K−2 for n (p)-type carriers by applying an external pressure of -1 GPa to the Janus monolayer. For n (p) -type doping at 300 K, the corresponding maximum value of ZT is 0.82 (0.78), which is 39% (14%) greater for n (p) type than for pure MoSSe Janus monolayer. When the pressure is increased to + 3 GPa, the value of ZT for n-type doping is further increased to 0.73, which is 24% higher than the value for pure monolayer. It is possible for a pure Janus monolayer to undergo n-type doping under pressure due to the shifting of the conduction band minima and valence band maxima. This study presents an attractive approach for manipulating the material thermoelectric properties through external pressure application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal Plus
The European Physical Journal Plus PHYSICS, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
8.80%
发文量
1150
审稿时长
4-8 weeks
期刊介绍: The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences. The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信