光谱配位法在分数扩散-反作用系统动态综合稳定性分析中的应用

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Shuo Li, Sami Ullah Khan, Emad A. A. Ismail, Fuad A. Awwad, Jiamin Yu, Wojciech Sumelka
{"title":"光谱配位法在分数扩散-反作用系统动态综合稳定性分析中的应用","authors":"Shuo Li,&nbsp;Sami Ullah Khan,&nbsp;Emad A. A. Ismail,&nbsp;Fuad A. Awwad,&nbsp;Jiamin Yu,&nbsp;Wojciech Sumelka","doi":"10.1007/s10773-025-05961-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we use the Legendre spectral collocation method to analyze the stability of a system of fractional diffusion-reaction equations, due to its capacity to simulate a variety of biological and physical processes with irregular diffusion properties. It causes that understanding such systems’ long-term behavior requires a study of stability analysis. The stability criteria are rigorously analyzed through mathematical techniques. This is done after discretizing the equations using the Legendre spectral collocation method. With the intention of predicting system dynamics and creating numerical algorithms, our findings offer discernment into the behavior of stability analysis for fractional diffusion-reaction systems.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Spectral Collocation Method to Dynamic Comprehensive Stability Analysis of Fractional Diffusion-Reaction System\",\"authors\":\"Shuo Li,&nbsp;Sami Ullah Khan,&nbsp;Emad A. A. Ismail,&nbsp;Fuad A. Awwad,&nbsp;Jiamin Yu,&nbsp;Wojciech Sumelka\",\"doi\":\"10.1007/s10773-025-05961-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we use the Legendre spectral collocation method to analyze the stability of a system of fractional diffusion-reaction equations, due to its capacity to simulate a variety of biological and physical processes with irregular diffusion properties. It causes that understanding such systems’ long-term behavior requires a study of stability analysis. The stability criteria are rigorously analyzed through mathematical techniques. This is done after discretizing the equations using the Legendre spectral collocation method. With the intention of predicting system dynamics and creating numerical algorithms, our findings offer discernment into the behavior of stability analysis for fractional diffusion-reaction systems.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"64 4\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-025-05961-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-05961-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们使用 Legendre 频谱配位法来分析分数扩散反应方程系统的稳定性,因为该方法能够模拟各种具有不规则扩散特性的生物和物理过程。研究发现,理解此类系统的长期行为需要对稳定性分析进行研究。通过数学技术对稳定性标准进行严格分析。这是在使用 Legendre 频谱配位法对方程进行离散化之后完成的。为了预测系统动力学和创建数值算法,我们的研究结果为分数扩散反应系统的稳定性分析行为提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Spectral Collocation Method to Dynamic Comprehensive Stability Analysis of Fractional Diffusion-Reaction System

In this study, we use the Legendre spectral collocation method to analyze the stability of a system of fractional diffusion-reaction equations, due to its capacity to simulate a variety of biological and physical processes with irregular diffusion properties. It causes that understanding such systems’ long-term behavior requires a study of stability analysis. The stability criteria are rigorously analyzed through mathematical techniques. This is done after discretizing the equations using the Legendre spectral collocation method. With the intention of predicting system dynamics and creating numerical algorithms, our findings offer discernment into the behavior of stability analysis for fractional diffusion-reaction systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信