Farnaz Mortezapour, Nasrin Shadjou, Mehdi Mahmoudian
{"title":"使用蒙脱石增强的聚醚砜基膜有效去除水溶液中的阴离子染料","authors":"Farnaz Mortezapour, Nasrin Shadjou, Mehdi Mahmoudian","doi":"10.1186/s13065-025-01464-8","DOIUrl":null,"url":null,"abstract":"<div><p>The study highlights the development and characterization of a novel polymeric membrane composed of montmorillonite (MMT) and polyethersulfone (PES) using the phase inversion process. The membrane incorporates polyethylene glycol (PEG) as a pore-forming agent and N-methyl pyrrolidone (NMP) as a solvent. The addition of MMT significantly enhances the membrane's properties, including hydrophilicity, porosity, antifouling capacity, hydraulic resistance, water uptake, and dye removal efficiency. Characterization techniques such as FT-IR spectroscopy, FE-SEM, EDX spectroscopy, water flux measurements, water uptake analysis, contact angle studies, and fouling assessments confirm the improved performance of the PES/MMT composite membrane. The presence of MMT increases the negative surface charge of the membrane, making it particularly effective in removing anionic dyes like Congo red (CR), Quinoline yellow (QY), and Methyl orange (MO). The study demonstrates that membranes with up to 5 wt% MMT exhibit high porosity (68.2%) and enhanced water flux (35 L/m<sup>2</sup>·h), achieving dye rejection rates of 99% for CR, 92% for MO, and 81% for QY. The integration of MMT into PES membranes presents a significant advancement in sustainable water purification technologies. These modified membranes demonstrate enhanced mechanical strength, improved structural stability, and an increased surface area, making them highly effective for dye adsorption. Compared to traditional materials, PES/MMT membranes exhibit superior performance in wastewater treatment and dye removal, offering a promising and eco-friendly alternative for addressing environmental challenges.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01464-8","citationCount":"0","resultStr":"{\"title\":\"Effective removal of anionic dyes from aqueous solution using polyethersulfone based membrane reinforced by montmorillonite\",\"authors\":\"Farnaz Mortezapour, Nasrin Shadjou, Mehdi Mahmoudian\",\"doi\":\"10.1186/s13065-025-01464-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study highlights the development and characterization of a novel polymeric membrane composed of montmorillonite (MMT) and polyethersulfone (PES) using the phase inversion process. The membrane incorporates polyethylene glycol (PEG) as a pore-forming agent and N-methyl pyrrolidone (NMP) as a solvent. The addition of MMT significantly enhances the membrane's properties, including hydrophilicity, porosity, antifouling capacity, hydraulic resistance, water uptake, and dye removal efficiency. Characterization techniques such as FT-IR spectroscopy, FE-SEM, EDX spectroscopy, water flux measurements, water uptake analysis, contact angle studies, and fouling assessments confirm the improved performance of the PES/MMT composite membrane. The presence of MMT increases the negative surface charge of the membrane, making it particularly effective in removing anionic dyes like Congo red (CR), Quinoline yellow (QY), and Methyl orange (MO). The study demonstrates that membranes with up to 5 wt% MMT exhibit high porosity (68.2%) and enhanced water flux (35 L/m<sup>2</sup>·h), achieving dye rejection rates of 99% for CR, 92% for MO, and 81% for QY. The integration of MMT into PES membranes presents a significant advancement in sustainable water purification technologies. These modified membranes demonstrate enhanced mechanical strength, improved structural stability, and an increased surface area, making them highly effective for dye adsorption. Compared to traditional materials, PES/MMT membranes exhibit superior performance in wastewater treatment and dye removal, offering a promising and eco-friendly alternative for addressing environmental challenges.</p></div>\",\"PeriodicalId\":496,\"journal\":{\"name\":\"BMC Chemistry\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01464-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13065-025-01464-8\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01464-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effective removal of anionic dyes from aqueous solution using polyethersulfone based membrane reinforced by montmorillonite
The study highlights the development and characterization of a novel polymeric membrane composed of montmorillonite (MMT) and polyethersulfone (PES) using the phase inversion process. The membrane incorporates polyethylene glycol (PEG) as a pore-forming agent and N-methyl pyrrolidone (NMP) as a solvent. The addition of MMT significantly enhances the membrane's properties, including hydrophilicity, porosity, antifouling capacity, hydraulic resistance, water uptake, and dye removal efficiency. Characterization techniques such as FT-IR spectroscopy, FE-SEM, EDX spectroscopy, water flux measurements, water uptake analysis, contact angle studies, and fouling assessments confirm the improved performance of the PES/MMT composite membrane. The presence of MMT increases the negative surface charge of the membrane, making it particularly effective in removing anionic dyes like Congo red (CR), Quinoline yellow (QY), and Methyl orange (MO). The study demonstrates that membranes with up to 5 wt% MMT exhibit high porosity (68.2%) and enhanced water flux (35 L/m2·h), achieving dye rejection rates of 99% for CR, 92% for MO, and 81% for QY. The integration of MMT into PES membranes presents a significant advancement in sustainable water purification technologies. These modified membranes demonstrate enhanced mechanical strength, improved structural stability, and an increased surface area, making them highly effective for dye adsorption. Compared to traditional materials, PES/MMT membranes exhibit superior performance in wastewater treatment and dye removal, offering a promising and eco-friendly alternative for addressing environmental challenges.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.