希尔尼科夫的科学遗产。第二部分.同线性混沌

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Sergey V. Gonchenko, Lev M. Lerman, Andrey L. Shilnikov, Dmitry V. Turaev
{"title":"希尔尼科夫的科学遗产。第二部分.同线性混沌","authors":"Sergey V. Gonchenko,&nbsp;Lev M. Lerman,&nbsp;Andrey L. Shilnikov,&nbsp;Dmitry V. Turaev","doi":"10.1134/S1560354725020017","DOIUrl":null,"url":null,"abstract":"<div><p>We review the works initiated and developed by L. P. Shilnikov on homoclinic chaos, highlighting his fundamental contributions to Poincaré homoclinics to periodic orbits and invariant tori. Additionally, we discuss his related findings in non-autonomous and infinite-dimensional systems. This survey continues our earlier review [1], where we examined Shilnikov’s groundbreaking results on bifurcations of homoclinic orbits — his extension of the classical work by A. A. Andronov and E. A. Leontovich from planar to multidimensional autonomous systems, as well as his pioneering discoveries on saddle-focus loops and spiral chaos.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"30 2","pages":"155 - 173"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scientific Heritage of L. P. Shilnikov. Part II. Homoclinic Chaos\",\"authors\":\"Sergey V. Gonchenko,&nbsp;Lev M. Lerman,&nbsp;Andrey L. Shilnikov,&nbsp;Dmitry V. Turaev\",\"doi\":\"10.1134/S1560354725020017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We review the works initiated and developed by L. P. Shilnikov on homoclinic chaos, highlighting his fundamental contributions to Poincaré homoclinics to periodic orbits and invariant tori. Additionally, we discuss his related findings in non-autonomous and infinite-dimensional systems. This survey continues our earlier review [1], where we examined Shilnikov’s groundbreaking results on bifurcations of homoclinic orbits — his extension of the classical work by A. A. Andronov and E. A. Leontovich from planar to multidimensional autonomous systems, as well as his pioneering discoveries on saddle-focus loops and spiral chaos.</p></div>\",\"PeriodicalId\":752,\"journal\":{\"name\":\"Regular and Chaotic Dynamics\",\"volume\":\"30 2\",\"pages\":\"155 - 173\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Chaotic Dynamics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1560354725020017\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354725020017","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文回顾了L. P. Shilnikov关于同斜混沌的研究成果,重点介绍了他对周期轨道和不变环面的庞卡罗同斜混沌的重要贡献。此外,我们讨论了他在非自治和无限维系统中的相关发现。这篇综述延续了我们之前的回顾[1],我们研究了Shilnikov在同斜轨道分岔上的突破性成果——他将A. A. Andronov和E. A. Leontovich的经典工作从平面扩展到多维自治系统,以及他在鞍焦点环和螺旋混沌方面的开创性发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scientific Heritage of L. P. Shilnikov. Part II. Homoclinic Chaos

We review the works initiated and developed by L. P. Shilnikov on homoclinic chaos, highlighting his fundamental contributions to Poincaré homoclinics to periodic orbits and invariant tori. Additionally, we discuss his related findings in non-autonomous and infinite-dimensional systems. This survey continues our earlier review [1], where we examined Shilnikov’s groundbreaking results on bifurcations of homoclinic orbits — his extension of the classical work by A. A. Andronov and E. A. Leontovich from planar to multidimensional autonomous systems, as well as his pioneering discoveries on saddle-focus loops and spiral chaos.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信