产生具有三个正 Lyapunov 指数的超混沌吸引子的情景

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Efrosiniia Karatetskaia, Aikan Shykhmamedov, Konstantin Soldatkin, Alexey Kazakov
{"title":"产生具有三个正 Lyapunov 指数的超混沌吸引子的情景","authors":"Efrosiniia Karatetskaia,&nbsp;Aikan Shykhmamedov,&nbsp;Konstantin Soldatkin,&nbsp;Alexey Kazakov","doi":"10.1134/S156035472502008X","DOIUrl":null,"url":null,"abstract":"<div><p>We study hyperchaotic attractors characterized by three positive Lyapunov exponents in numerical experiments. In order to possess this property, periodic orbits belonging to the attractor should have a three-dimensional unstable invariant manifold. Starting with a stable fixed point we describe several bifurcation scenarios that create such periodic orbits inside the attractor. These scenarios include cascades of alternating period-doubling and Neimark – Sacker bifurcations which, as we show, naturally appear near the cascade of codimension-2 period-doubling bifurcations, when periodic orbits along the cascade have multipliers <span>\\((-1,e^{i\\phi},e^{-i\\phi})\\)</span>. The proposed scenarios are illustrated by examples of the three-dimensional Kaneko endomorphism and a four-dimensional Hénon map.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"30 2","pages":"306 - 324"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scenarios for the Creation of Hyperchaotic Attractors with Three Positive Lyapunov Exponents\",\"authors\":\"Efrosiniia Karatetskaia,&nbsp;Aikan Shykhmamedov,&nbsp;Konstantin Soldatkin,&nbsp;Alexey Kazakov\",\"doi\":\"10.1134/S156035472502008X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study hyperchaotic attractors characterized by three positive Lyapunov exponents in numerical experiments. In order to possess this property, periodic orbits belonging to the attractor should have a three-dimensional unstable invariant manifold. Starting with a stable fixed point we describe several bifurcation scenarios that create such periodic orbits inside the attractor. These scenarios include cascades of alternating period-doubling and Neimark – Sacker bifurcations which, as we show, naturally appear near the cascade of codimension-2 period-doubling bifurcations, when periodic orbits along the cascade have multipliers <span>\\\\((-1,e^{i\\\\phi},e^{-i\\\\phi})\\\\)</span>. The proposed scenarios are illustrated by examples of the three-dimensional Kaneko endomorphism and a four-dimensional Hénon map.</p></div>\",\"PeriodicalId\":752,\"journal\":{\"name\":\"Regular and Chaotic Dynamics\",\"volume\":\"30 2\",\"pages\":\"306 - 324\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Chaotic Dynamics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S156035472502008X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S156035472502008X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在数值实验中研究了以三个正李雅普诺夫指数为特征的超混沌吸引子。为了具有这一性质,属于吸引子的周期轨道必须具有三维不稳定不变流形。从一个稳定的不动点开始,我们描述了在吸引子内部产生周期轨道的几种分岔情况。这些情况包括交替的倍周期分岔和Neimark - Sacker分岔的级联,正如我们所示,当沿级联的周期轨道具有乘子\((-1,e^{i\phi},e^{-i\phi})\)时,它们自然出现在co维2倍周期分岔的级联附近。通过三维Kaneko自同态和四维hsamnon图的例子说明了所提出的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scenarios for the Creation of Hyperchaotic Attractors with Three Positive Lyapunov Exponents

We study hyperchaotic attractors characterized by three positive Lyapunov exponents in numerical experiments. In order to possess this property, periodic orbits belonging to the attractor should have a three-dimensional unstable invariant manifold. Starting with a stable fixed point we describe several bifurcation scenarios that create such periodic orbits inside the attractor. These scenarios include cascades of alternating period-doubling and Neimark – Sacker bifurcations which, as we show, naturally appear near the cascade of codimension-2 period-doubling bifurcations, when periodic orbits along the cascade have multipliers \((-1,e^{i\phi},e^{-i\phi})\). The proposed scenarios are illustrated by examples of the three-dimensional Kaneko endomorphism and a four-dimensional Hénon map.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信