双平面上通用双参数矢量场族中的奇异点

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Dmitry A. Filimonov, Yulij S. Ilyashenko
{"title":"双平面上通用双参数矢量场族中的奇异点","authors":"Dmitry A. Filimonov,&nbsp;Yulij S. Ilyashenko","doi":"10.1134/S1560354725020066","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we give a full description of all possible singular points that occur in generic 2-parameter families of vector fields on compact 2-manifolds. This is a part of a large project aimed at a complete study of global bifurcations in two-parameter families of vector fields on the two-sphere.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"30 2","pages":"279 - 290"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular Points in Generic Two-Parameter Families of Vector Fields on a 2-Manifold\",\"authors\":\"Dmitry A. Filimonov,&nbsp;Yulij S. Ilyashenko\",\"doi\":\"10.1134/S1560354725020066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we give a full description of all possible singular points that occur in generic 2-parameter families of vector fields on compact 2-manifolds. This is a part of a large project aimed at a complete study of global bifurcations in two-parameter families of vector fields on the two-sphere.</p></div>\",\"PeriodicalId\":752,\"journal\":{\"name\":\"Regular and Chaotic Dynamics\",\"volume\":\"30 2\",\"pages\":\"279 - 290\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Chaotic Dynamics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1560354725020066\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354725020066","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了紧2流形上向量场的一般2参数族中所有可能出现的奇点的完整描述。这是一个大型项目的一部分,旨在全面研究双球上矢量场的双参数族的全局分岔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singular Points in Generic Two-Parameter Families of Vector Fields on a 2-Manifold

In this paper, we give a full description of all possible singular points that occur in generic 2-parameter families of vector fields on compact 2-manifolds. This is a part of a large project aimed at a complete study of global bifurcations in two-parameter families of vector fields on the two-sphere.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信