紧凑型 ICA 拓扑布尔和斯米尔诺夫紧凑化定理

IF 0.6 4区 数学 Q3 MATHEMATICS
Ali Akbar Estaji, Rahimeh Pourkhandani, Mehdi Vatandoost
{"title":"紧凑型 ICA 拓扑布尔和斯米尔诺夫紧凑化定理","authors":"Ali Akbar Estaji,&nbsp;Rahimeh Pourkhandani,&nbsp;Mehdi Vatandoost","doi":"10.1007/s00012-025-00885-9","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, the concepts of topoframe and topoboolean have been introduced as a generalization of point-free topology, and the relation between topobooleans and complete I-contact algebras (ICAs) has been studied. In this paper, we first introduce the ICA-topoboolean <span>\\(B_{\\tau (C)}\\)</span>, in which <span>\\(\\tau (C)\\)</span> is induced from the complete ICA (<i>B</i>, <i>C</i>), and then characterize compact atomic ICA-topobooleans by their point clusters. As an example of the noncompact case, we determine all clusters of <span>\\(\\big ( \\mathcal {P}(\\mathbb {R}), C\\big )\\)</span>, an ICA on the Boolean algebra of the power set of real numbers <span>\\(\\mathbb {R}\\)</span>. Finally, we generalize the Smirnov compactification theorem from proximity spaces to atomic ICA-topobooleans.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"86 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact ICA-topobooleans and the Smirnov compactification theorem\",\"authors\":\"Ali Akbar Estaji,&nbsp;Rahimeh Pourkhandani,&nbsp;Mehdi Vatandoost\",\"doi\":\"10.1007/s00012-025-00885-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, the concepts of topoframe and topoboolean have been introduced as a generalization of point-free topology, and the relation between topobooleans and complete I-contact algebras (ICAs) has been studied. In this paper, we first introduce the ICA-topoboolean <span>\\\\(B_{\\\\tau (C)}\\\\)</span>, in which <span>\\\\(\\\\tau (C)\\\\)</span> is induced from the complete ICA (<i>B</i>, <i>C</i>), and then characterize compact atomic ICA-topobooleans by their point clusters. As an example of the noncompact case, we determine all clusters of <span>\\\\(\\\\big ( \\\\mathcal {P}(\\\\mathbb {R}), C\\\\big )\\\\)</span>, an ICA on the Boolean algebra of the power set of real numbers <span>\\\\(\\\\mathbb {R}\\\\)</span>. Finally, we generalize the Smirnov compactification theorem from proximity spaces to atomic ICA-topobooleans.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":\"86 2\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-025-00885-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-025-00885-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,作为无点拓扑的推广,引入了拓扑框架和拓扑布尔的概念,并研究了拓扑布尔与完全i -接触代数的关系。在本文中,我们首先引入了ICA-拓扑布尔\(B_{\tau (C)}\),其中\(\tau (C)\)是由完整ICA (B, C)导出的,然后通过它们的点簇来表征紧凑原子ICA-拓扑布尔。作为非紧情况的一个例子,我们确定了在实数幂集\(\mathbb {R}\)的布尔代数上的ICA \(\big ( \mathcal {P}(\mathbb {R}), C\big )\)的所有簇。最后,我们将Smirnov紧化定理从邻近空间推广到原子ica拓扑空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compact ICA-topobooleans and the Smirnov compactification theorem

Recently, the concepts of topoframe and topoboolean have been introduced as a generalization of point-free topology, and the relation between topobooleans and complete I-contact algebras (ICAs) has been studied. In this paper, we first introduce the ICA-topoboolean \(B_{\tau (C)}\), in which \(\tau (C)\) is induced from the complete ICA (BC), and then characterize compact atomic ICA-topobooleans by their point clusters. As an example of the noncompact case, we determine all clusters of \(\big ( \mathcal {P}(\mathbb {R}), C\big )\), an ICA on the Boolean algebra of the power set of real numbers \(\mathbb {R}\). Finally, we generalize the Smirnov compactification theorem from proximity spaces to atomic ICA-topobooleans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信