{"title":"核最小均方算法的偏差补偿","authors":"Ying-Ren Chien;Jin-Ling Liu;En-Ting Lin;Guobing Qian","doi":"10.1109/LSENS.2025.3553594","DOIUrl":null,"url":null,"abstract":"This letter addresses the challenge of input noise in nonlinear system identification using kernel adaptive filtering (KAF) techniques. Conventional kernel least-mean-square (KLMS) algorithms are susceptible to input noise, which introduces bias into the estimated weights, degrading performance. To mitigate this issue, we propose a bias-compensated KLMS (BC-KLMS) algorithm. By employing a finite-order nonlinear regression model and leveraging Taylor series expansion, we analyze the bias terms generated by input noise and incorporate them into a modified cost function. The resulting BC-KLMS algorithm effectively reduces noise-induced bias, leading to improved accuracy in nonlinear system identification tasks. Simulation results demonstrate that BC-KLMS outperforms traditional KLMS methods, achieving substantial bias compensation even in low signal-to-noise ratio conditions. This approach enhances the robustness of KAFs in real-world applications where input noise is prevalent.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 4","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bias Compensation for Kernel Least-Mean-Square Algorithms\",\"authors\":\"Ying-Ren Chien;Jin-Ling Liu;En-Ting Lin;Guobing Qian\",\"doi\":\"10.1109/LSENS.2025.3553594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter addresses the challenge of input noise in nonlinear system identification using kernel adaptive filtering (KAF) techniques. Conventional kernel least-mean-square (KLMS) algorithms are susceptible to input noise, which introduces bias into the estimated weights, degrading performance. To mitigate this issue, we propose a bias-compensated KLMS (BC-KLMS) algorithm. By employing a finite-order nonlinear regression model and leveraging Taylor series expansion, we analyze the bias terms generated by input noise and incorporate them into a modified cost function. The resulting BC-KLMS algorithm effectively reduces noise-induced bias, leading to improved accuracy in nonlinear system identification tasks. Simulation results demonstrate that BC-KLMS outperforms traditional KLMS methods, achieving substantial bias compensation even in low signal-to-noise ratio conditions. This approach enhances the robustness of KAFs in real-world applications where input noise is prevalent.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 4\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10937054/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10937054/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Bias Compensation for Kernel Least-Mean-Square Algorithms
This letter addresses the challenge of input noise in nonlinear system identification using kernel adaptive filtering (KAF) techniques. Conventional kernel least-mean-square (KLMS) algorithms are susceptible to input noise, which introduces bias into the estimated weights, degrading performance. To mitigate this issue, we propose a bias-compensated KLMS (BC-KLMS) algorithm. By employing a finite-order nonlinear regression model and leveraging Taylor series expansion, we analyze the bias terms generated by input noise and incorporate them into a modified cost function. The resulting BC-KLMS algorithm effectively reduces noise-induced bias, leading to improved accuracy in nonlinear system identification tasks. Simulation results demonstrate that BC-KLMS outperforms traditional KLMS methods, achieving substantial bias compensation even in low signal-to-noise ratio conditions. This approach enhances the robustness of KAFs in real-world applications where input noise is prevalent.