核最小均方算法的偏差补偿

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Ying-Ren Chien;Jin-Ling Liu;En-Ting Lin;Guobing Qian
{"title":"核最小均方算法的偏差补偿","authors":"Ying-Ren Chien;Jin-Ling Liu;En-Ting Lin;Guobing Qian","doi":"10.1109/LSENS.2025.3553594","DOIUrl":null,"url":null,"abstract":"This letter addresses the challenge of input noise in nonlinear system identification using kernel adaptive filtering (KAF) techniques. Conventional kernel least-mean-square (KLMS) algorithms are susceptible to input noise, which introduces bias into the estimated weights, degrading performance. To mitigate this issue, we propose a bias-compensated KLMS (BC-KLMS) algorithm. By employing a finite-order nonlinear regression model and leveraging Taylor series expansion, we analyze the bias terms generated by input noise and incorporate them into a modified cost function. The resulting BC-KLMS algorithm effectively reduces noise-induced bias, leading to improved accuracy in nonlinear system identification tasks. Simulation results demonstrate that BC-KLMS outperforms traditional KLMS methods, achieving substantial bias compensation even in low signal-to-noise ratio conditions. This approach enhances the robustness of KAFs in real-world applications where input noise is prevalent.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 4","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bias Compensation for Kernel Least-Mean-Square Algorithms\",\"authors\":\"Ying-Ren Chien;Jin-Ling Liu;En-Ting Lin;Guobing Qian\",\"doi\":\"10.1109/LSENS.2025.3553594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter addresses the challenge of input noise in nonlinear system identification using kernel adaptive filtering (KAF) techniques. Conventional kernel least-mean-square (KLMS) algorithms are susceptible to input noise, which introduces bias into the estimated weights, degrading performance. To mitigate this issue, we propose a bias-compensated KLMS (BC-KLMS) algorithm. By employing a finite-order nonlinear regression model and leveraging Taylor series expansion, we analyze the bias terms generated by input noise and incorporate them into a modified cost function. The resulting BC-KLMS algorithm effectively reduces noise-induced bias, leading to improved accuracy in nonlinear system identification tasks. Simulation results demonstrate that BC-KLMS outperforms traditional KLMS methods, achieving substantial bias compensation even in low signal-to-noise ratio conditions. This approach enhances the robustness of KAFs in real-world applications where input noise is prevalent.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 4\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10937054/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10937054/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这封信解决了使用核自适应滤波(KAF)技术在非线性系统识别中输入噪声的挑战。传统的核最小均方(KLMS)算法容易受到输入噪声的影响,这会在估计的权重中引入偏差,从而降低性能。为了解决这个问题,我们提出了一种偏差补偿KLMS (BC-KLMS)算法。通过采用有限阶非线性回归模型并利用泰勒级数展开,我们分析了由输入噪声产生的偏差项,并将它们合并到修改的成本函数中。由此产生的BC-KLMS算法有效地降低了噪声引起的偏差,从而提高了非线性系统识别任务的准确性。仿真结果表明,BC-KLMS优于传统的KLMS方法,即使在低信噪比条件下也能实现可观的偏置补偿。这种方法增强了KAFs在输入噪声普遍存在的实际应用中的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bias Compensation for Kernel Least-Mean-Square Algorithms
This letter addresses the challenge of input noise in nonlinear system identification using kernel adaptive filtering (KAF) techniques. Conventional kernel least-mean-square (KLMS) algorithms are susceptible to input noise, which introduces bias into the estimated weights, degrading performance. To mitigate this issue, we propose a bias-compensated KLMS (BC-KLMS) algorithm. By employing a finite-order nonlinear regression model and leveraging Taylor series expansion, we analyze the bias terms generated by input noise and incorporate them into a modified cost function. The resulting BC-KLMS algorithm effectively reduces noise-induced bias, leading to improved accuracy in nonlinear system identification tasks. Simulation results demonstrate that BC-KLMS outperforms traditional KLMS methods, achieving substantial bias compensation even in low signal-to-noise ratio conditions. This approach enhances the robustness of KAFs in real-world applications where input noise is prevalent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信